出品:科普中国

制作:中国科学院数学与系统科学研究院 黄逸文

监制:中国科学院计算机网络信息中心

数学十大最好公式(数学中有哪些美丽公式)(1)

一、圆周率π级数表达公式

数学十大最好公式(数学中有哪些美丽公式)(2)

自古以来,人们就痴迷于如何计算圆的周长。以拉丁字母π标记的圆周率,其定义就是一个圆的周长相对于其直径的比。尽管圆是如此地简单和完美,在生活中更是有举足轻重的应用,但是众多先贤对计算π的精确值却一筹莫展。

早在古希腊时期,主流的毕达哥拉斯学派就认为世界上所有的数都是有理数。具有讽刺意义的是,无理数正是毕达哥拉斯的弟子所发现,因为和主流思想相悖,最终被其学派迫害身亡。然而对是有理数还是无理数的争论,以及如何简单便捷地计算出的具体值却困扰了人们1000多年。

这个公式是由瑞士数学家欧拉发现。该公式由5个数学上最简单的符号组成,它通过3种基础运算,即加法、乘法和幂运算就将1、0、、i和e这五个数学中最重要的数字联系在了一起,堪称天才的完美之作。

它是数学与世界之间兼具理性色彩与深邃之美的巅峰之笔。它是纯粹的数学之美,淋漓尽致地展现出数学作为跨文化、跨种族的通用语言的简单与和谐,让人们得以一窥数学穿越宇宙时空通行无碍的完美特性。

三、傅里叶级数

数学十大最好公式(数学中有哪些美丽公式)(3)

特别的,对以【-π,π】为周期的可微分函数f(x)有如下的无穷级数表达式:

数学十大最好公式(数学中有哪些美丽公式)(4)

1807年,法国数学家傅里叶发现任何可微分的函数都可以用正弦函数与余弦函数的加和表示出来,不论原始函数的图形多么诡异,这种表示都可以达到任意需要的精度。

透过傅里叶发明的数学工具,数学分析领域进入了全新的时代。从数学的角度来看,傅里叶的定理告诉我们,任何曲线不论其本质如何,都可以用数不尽的简单曲线加以取代,或者说,所有曲线都可以用堆叠波纹的方式加以呈现。这提供了人们认识事物的极为强有力的工具。

时至今日,世界上很多领域都受益于傅里叶级数的应用。从震荡分析到影像处理,从激动人心的音乐创作到信息时代大放异彩的通讯技术,到处都有傅里叶级数的踪迹。甚至人们可以通过遥远星空所发出的光就能分析所在星球的化学成分,历史上人们就是通过光的频谱分析才逐步认识到太阳发光发热的秘密等等。这一切,都是傅里叶级数的应用带给世界文明的馈赠。

数学十大最好公式(数学中有哪些美丽公式)(5)

"科普中国"是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。

本文由科普中国融合创作出品,转载请注明出处。

,