在昨天的文章中,我们探讨了线性可分情况下的支持向量机模型。本章我们继续探讨svm的第二种情况,线性支持向量机。

何谓线性支持呢?就是训练数据中大部分实例组成的样本集合是线性可分的,但有一些特异点的存在造成了数据线性不可分的状态,在去除了这些特异点之后,剩下的数据组成的集合便是线性可分的。

原始问题

我们可以在线性kefen支持向量机的基础上,推导线性支持向量机的基本原理。假设训练数据线性不可分,这意味着某些样本点不满足此前线性可分中的函数间隔大于1的约束条件,

线性支持向量机这里的处理方法是对每个实例引入一个松弛变量,使得函数间隔加上松弛变量大于等于1。对应于线性可分时的硬间隔最大化(hard margin svm),线性支持向量机可称为软间隔最大化问题(soft margin svm)。

因而线性支持向量机就可以形式化为一个tu二次规划问题:

用python实现人工神经网络(Python实现机器学习算法)(1)

其中C>0为惩罚参数,表示对误分类的惩罚程度。最小化该目标函数可包含两层含义:既要使得间隔最大化也要使得误分类点个数最少,C即为二者的调和系数。

再来看线性支持向量机的对偶问题。首先定义拉格朗日的函数如下:

用python实现人工神经网络(Python实现机器学习算法)(2)

由上一讲的推导可知,对偶问题为拉格朗日函数的极大极小问题。基于该拉格朗日函数对w、b和keci求偏导:

用python实现人工神经网络(Python实现机器学习算法)(3)

由上三式可得:

用python实现人工神经网络(Python实现机器学习算法)(4)

将上述三个式子再带回到拉格朗日函数中:

用python实现人工神经网络(Python实现机器学习算法)(5)

于是便可得到线性支持向量机的对偶问题:

用python实现人工神经网络(Python实现机器学习算法)(6)

由KKT条件:

用python实现人工神经网络(Python实现机器学习算法)(7)

计算可得:

用python实现人工神经网络(Python实现机器学习算法)(8)

用python实现人工神经网络(Python实现机器学习算法)(9)

以上便是线性支持向量机,也即软间隔最大化对偶问题的推导过程。

cvxopt

本节将使用Python的凸优化求解的第三方库cvxopt实现线性支持向量机。先对该库进行了一个简单介绍。经典的二次规划问题可表示为如下形式:

用python实现人工神经网络(Python实现机器学习算法)(10)

假设要求解决如下二次规划问题:

用python实现人工神经网络(Python实现机器学习算法)(11)

将目标函数和约束条件写成矩阵形式:

用python实现人工神经网络(Python实现机器学习算法)(12)

基于cvxopt包求解上述问题如下:

import numpy from cvxopt import matrix from cvxopt import solvers

# 定义二次规划参数 P = matrix([[1.0,0.0],[0.0,0.0]]) q = matrix([3.0,4.0]) G = matrix([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]]) h = matrix([0.0,0.0,-15.0,100.0,80.0])

# 构建求解 sol = solvers.qp(P,q,G,h)

用python实现人工神经网络(Python实现机器学习算法)(13)

# 获取最优值 print(sol['x'],sol['primal objective'])

用python实现人工神经网络(Python实现机器学习算法)(14)

基于cvxopt的线性支持向量机实现

导入相关package:

import numpy as np from numpy import linalg import cvxopt import cvxopt.solvers import pylab as pl

定义为一个线性he函数:

def linear_kernel(x1, x2): return np.dot(x1, x2)

生成示例数据:

def gen_non_lin_separable_data(): mean1 = [-1, 2] mean2 = [1, -1] mean3 = [4, -4] mean4 = [-4, 4] cov = [[1.0, 0.8], [0.8, 1.0]] X1 = np.random.multivariate_normal(mean1, cov, 50) X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50))) y1 = np.ones(len(X1)) X2 = np.random.multivariate_normal(mean2, cov, 50) X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50))) y2 = np.ones(len(X2)) * -1 return X1, y1, X2, y2 X1, y1, X2, y2 = gen_non_lin_separable_data()

基于示例数据生成训练集和测试集:

def split_train(X1, y1, X2, y2): X1_train = X1[:90] y1_train = y1[:90] X2_train = X2[:90] y2_train = y2[:90] X_train = np.vstack((X1_train, X2_train)) y_train = np.hstack((y1_train, y2_train)) return X_train, y_train

def split_test(X1, y1, X2, y2): X1_test = X1[90:] y1_test = y1[90:] X2_test = X2[90:] y2_test = y2[90:] X_test = np.vstack((X1_test, X2_test)) y_test = np.hstack((y1_test, y2_test)) return X_test, y_test

X_train, y_train = split_train(X1, y1, X2, y2) X_test, y_test = split_test(X1, y1, X2, y2) print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

基于cvxopt库定义线性支持向量机的训练过程:

def fit(X, y, C): n_samples, n_features = X.shape # Gram matrix K = np.zeros((n_samples, n_samples)) for i in range(n_samples): for j in range(n_samples): K[i, j] = linear_kernel(X[i], X[j]) P = cvxopt.matrix(np.outer(y, y) * K) q = cvxopt.matrix(np.ones(n_samples) * -1) A = cvxopt.matrix(y, (1, n_samples)) b = cvxopt.matrix(0.0) if C is None: G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1)) h = cvxopt.matrix(np.zeros(n_samples)) else: tmp1 = np.diag(np.ones(n_samples) * -1) tmp2 = np.identity(n_samples) G = cvxopt.matrix(np.vstack((tmp1, tmp2))) tmp1 = np.zeros(n_samples) tmp2 = np.ones(n_samples) * C h = cvxopt.matrix(np.hstack((tmp1, tmp2))) # solve QP problem solution = cvxopt.solvers.qp(P, q, G, h, A, b) # Lagrange multipliers a = np.ravel(solution['x']) # Support vectors have non zero lagrange multipliers sv = a > 1e-5 ind = np.arange(len(a))[sv] a = a[sv] sv_x = X[sv] sv_y = y[sv] print("%d support vectors out of %d points" % (len(a), n_samples)) # Intercept b = 0 for n in range(len(a)): b = sv_y[n] b -= np.sum(a * sv_y * K[ind[n], sv]) b /= len(a) # Weight vector w = np.zeros(n_features) for n in range(len(a)): w = a[n] * sv_y[n] * sv[n] else: w = None

用python实现人工神经网络(Python实现机器学习算法)(15)

软间隔支持向量机函数化封装

import numpy as np from numpy import linalg import cvxopt import cvxopt.solvers import pylab as pl def linear_kernel(x1, x2): return np.dot(x1, x2) class soft_margin_svm(object): def __init__(self, kernel=linear_kernel, C=None): self.kernel = kernel self.C = C if self.C is not None: self.C = float(self.C) def fit(self, X, y): n_samples, n_features = X.shape # Gram matrix K = np.zeros((n_samples, n_samples)) for i in range(n_samples): for j in range(n_samples): K[i, j] = self.kernel(X[i], X[j]) P = cvxopt.matrix(np.outer(y, y) * K) q = cvxopt.matrix(np.ones(n_samples) * -1) A = cvxopt.matrix(y, (1, n_samples)) b = cvxopt.matrix(0.0) if self.C is None: G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1)) h = cvxopt.matrix(np.zeros(n_samples)) else: tmp1 = np.diag(np.ones(n_samples) * -1) tmp2 = np.identity(n_samples) G = cvxopt.matrix(np.vstack((tmp1, tmp2))) tmp1 = np.zeros(n_samples) tmp2 = np.ones(n_samples) * self.C h = cvxopt.matrix(np.hstack((tmp1, tmp2))) # solve QP problem solution = cvxopt.solvers.qp(P, q, G, h, A, b) # Lagrange multipliers a = np.ravel(solution['x']) # Support vectors have non zero lagrange multipliers sv = a > 1e-5 ind = np.arange(len(a))[sv] self.a = a[sv] self.sv = X[sv] self.sv_y = y[sv] print("%d support vectors out of %d points" % (len(self.a), n_samples)) # Intercept self.b = 0 for n in range(len(self.a)): self.b = self.sv_y[n] self.b -= np.sum(self.a * self.sv_y * K[ind[n], sv]) self.b /= len(self.a) # Weight vector if self.kernel == linear_kernel: self.w = np.zeros(n_features) for n in range(len(self.a)): self.w = self.a[n] * self.sv_y[n] * self.sv[n] else: self.w = None def project(self, X): if self.w is not None: return np.dot(X, self.w) self.b else: y_predict = np.zeros(len(X)) for i in range(len(X)): s = 0 for a, sv_y, sv in zip(self.a, self.sv_y, self.sv): s = a * sv_y * self.kernel(X[i], sv) y_predict[i] = s return y_predict self.b def predict(self, X): return np.sign(self.project(X)) if __name__ == "__main__": def gen_non_lin_separable_data(): mean1 = [-1, 2] mean2 = [1, -1] mean3 = [4, -4] mean4 = [-4, 4] cov = [[1.0, 0.8], [0.8, 1.0]] X1 = np.random.multivariate_normal(mean1, cov, 50) X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50))) y1 = np.ones(len(X1)) X2 = np.random.multivariate_normal(mean2, cov, 50) X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50))) y2 = np.ones(len(X2)) * -1 return X1, y1, X2, y2 def gen_lin_separable_overlap_data(): # generate training data in the 2-d case mean1 = np.array([0, 2]) mean2 = np.array([2, 0]) cov = np.array([[1.5, 1.0], [1.0, 1.5]]) X1 = np.random.multivariate_normal(mean1, cov, 100) y1 = np.ones(len(X1)) X2 = np.random.multivariate_normal(mean2, cov, 100) y2 = np.ones(len(X2)) * -1 return X1, y1, X2, y2 def split_train(X1, y1, X2, y2): X1_train = X1[:90] y1_train = y1[:90] X2_train = X2[:90] y2_train = y2[:90] X_train = np.vstack((X1_train, X2_train)) y_train = np.hstack((y1_train, y2_train)) return X_train, y_train def split_test(X1, y1, X2, y2): X1_test = X1[90:] y1_test = y1[90:] X2_test = X2[90:] y2_test = y2[90:] X_test = np.vstack((X1_test, X2_test)) y_test = np.hstack((y1_test, y2_test)) return X_test, y_test def plot_margin(X1_train, X2_train, clf): def f(x, w, b, c=0): # given x, return y such that [x,y] in on the line # w.x b = c return (-w[0] * x - b c) / w[1] pl.plot(X1_train[:, 0], X1_train[:, 1], "ro") pl.plot(X2_train[:, 0], X2_train[:, 1], "bo") pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c="g") # w.x b = 0 a0 = -4; a1 = f(a0, clf.w, clf.b) b0 = 4; b1 = f(b0, clf.w, clf.b) pl.plot([a0, b0], [a1, b1], "k") # w.x b = 1 a0 = -4; a1 = f(a0, clf.w, clf.b, 1) b0 = 4; b1 = f(b0, clf.w, clf.b, 1) pl.plot([a0, b0], [a1, b1], "k--") # w.x b = -1 a0 = -4; a1 = f(a0, clf.w, clf.b, -1) b0 = 4; b1 = f(b0, clf.w, clf.b, -1) pl.plot([a0, b0], [a1, b1], "k--") pl.axis("tight") pl.show() def plot_contour(X1_train, X2_train, clf): pl.plot(X1_train[:, 0], X1_train[:, 1], "ro") pl.plot(X2_train[:, 0], X2_train[:, 1], "bo") pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c="g") X1, X2 = np.meshgrid(np.linspace(-6, 6, 50), np.linspace(-6, 6, 50)) X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))]) Z = clf.project(X).reshape(X1.shape) pl.contour(X1, X2, Z, [0.0], colors='k', linewidths=1, origin='lower') pl.contour(X1, X2, Z 1, [0.0], colors='grey', linewidths=1, origin='lower') pl.contour(X1, X2, Z - 1, [0.0], colors='grey', linewidths=1, origin='lower') pl.axis("tight") pl.show() def test_soft(): X1, y1, X2, y2 = gen_lin_separable_overlap_data() X_train, y_train = split_train(X1, y1, X2, y2) X_test, y_test = split_test(X1, y1, X2, y2) clf = soft_margin_svm(C=1000.1) clf.fit(X_train, y_train) y_predict = clf.predict(X_test) correct = np.sum(y_predict == y_test) print("%d out of %d predictions correct" % (correct, len(y_predict))) plot_contour(X_train[y_train == 1], X_train[y_train == -1], clf) test_soft()

用python实现人工神经网络(Python实现机器学习算法)(16)

原文参考资料:

https://github.com/SmirkCao/Lihang/tree/master/CH07

http://cvxopt.org/examples/

https://mp.weixin.qq.com/s/qw3sFiWQLoPOKTU9bkJgyA

,