十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项系数其实就是运用乘法公式运算来进行因式分解,下面我们就来说一说关于十字相乘法分解因式?我们一起去了解并探讨一下这个问题吧!
十字相乘法分解因式
十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式运算来进行因式分解。
十字分解法能用于二次三项式(一元二次式)的分解因式(不一定是整数范围内)。对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x2+(p+q)x+pq=(x+p)(x+q)。
示例:
(1)例1因式分解:x2-x-56;
分析:因为7x + (-8x) =-x;
解:原式=(x+7)(x-8)。
(2)例2因式分解:x2-10x+16;
分析:因为-2x+(-8x)=-10x;
解:原式=(x-2)(x-8)。