引力波是否表现出波粒二象性呢?
图源:NASA
目前激光干涉引力波天文台已经探测到了第一个引力波信号,正如爱因斯坦理论中的预测,构成太空的本身应当有波纹和波的部分已经得到了证实。随之而来的是各种各样有趣的问题,包括从读者(以及Patreon的支持者)来的问题,Joe Latone问:
“引力波是否表现出波粒二象性呢,如果有的话,激光干涉引力波天文台的物理学家们是否也有方法证实呢,就像双缝干涉实验那样?”
波粒二象性是我们从未揭开的量子力学中最奇怪的结果之一。
图源:维基共享用户Sakurambo基于托马斯杨1803年提交给皇室的作品。
开始很简单:物质是由粒子构成的,比如原子和它们的组成部分,而辐射由波构成。你可以说物质是粒子因为它会和其他粒子碰撞,弹开,粘在一起,交换能量,被束缚等等。你也可以说物质是波因为它可以和自己绕射并相互干扰。牛顿对光的看法有误,他认为光是由粒子构成的,但其他人,例如惠更斯(和他同时代)、十九世纪早期的科学家杨、菲涅尔最后都表明如果没有波的存在,无法解释光的属性。最充分的证明是当你把它穿过一个双缝时:背景屏幕展示出的图像表明光既进行了建设性的干涉(出现亮斑),也发生了决定性的干涉(导致黑点)。
图源:维基共享用户Tonomura博士和Belsazar。注意当粒子足够多时,即使它们一次通过一个双缝,干涉图像也会清晰可见。
这种干涉是波的独特产物,由此也“证明”了光是波。但在二十世纪初,随着光电效应的发现,这点便更加迷惑。当你用光照射某种特定物质时,有时电子会被光“踢开”。如果你让光更红(因此能量更低)——即使任意强度的光——也不会激发电子。但如果你让光更蓝(因此能量更高),即使强度很低,也仍然会激发电子。不久后,我们发现光被量子化为光子,甚至个别光子可以像粒子一样运动,如果光有合适的能量,电子便会电离。
图源:维基共享用户Klaus-Dieter Keller创造了该矢量图。注意当能量低于某一阈值时,看不到电离,一但超过了这个阈值,电离便开始了,光子能量越大,电离速度越快。
20世纪,更奇怪的知识出现了,我们发现:
·当你让光子单独的穿过双缝时,它们仍然会相互干涉,产生和波本质相符合的图像。
·被认为是粒子的电子也类似的表现出这种干涉和衍射的图案。
·如果你测量某个光子或电子通过哪个狭缝时,并不能得到图案,但如果你不测量它,便会得到图案。
这就好像是每个我们观测到的粒子都可描述为波和粒子。此外,量子物理告诉我们需要在适当的情况下同时对待它们,否则便不会得到与实验一致的结果。
图源:B. P. Abbott et al. (LIGO科学合作和Virgo合作), 通过物理预告快报116, 061102 (2016)。
现在我们来谈引力波。它是独特的,因为我们只看到了它们的波状部分而不是基于粒子的部分。然而,就像水波的波由粒子构成一样,我们完全相信引力波是由粒子构成的。只不过那些是引力子(相较于水分子而言),它们是调节引力的粒子,也完全相信它们可以作为引力本质上是量子力的结果而出现。
图源:Dave Whyte《蜜蜂与炸弹》
因为这是一个波,因为这个波的行为表现和广义相对论预测的一样,包括:
·在旋进相阶段,
·在合并相阶段,
·在振铃相阶段,
我们可以很有把握地推断,它将持续做广义相对论预测的所有类似波会做的事情。与我们过去认为的波在细节上有些不同:它们不是水波一样的标量波,也不是光那样的失量波,它们有同相的、振荡的电场和磁场。相反,它们是张量波,在经过那片区域时会造成空间收缩和垂直方向上的稀薄。
从任何类型的波来看,这些波会做很多相同的事,包括它们通过中介以一个特定的速度传播(光速,通过太空本身结构),它们在太空里和其他波发生决定性地、建设性地干涉,这些“凌驾”于其它时空曲率之上的波也已经存在,如果有什么其他方式能让这些波发生衍射——也许在黑洞极强的引力源作用下会发生——它们就会这样做。此外,随着宇宙膨胀,我们知道这些波会做所有膨胀宇宙里的波会做的事:随着宇宙背景空间膨胀,它们也会拉伸和膨胀。
图源:E. Siegel,来自书《超越银行系》。
所以真正的问题是,我们怎样测试它的量子部分?我们怎样寻找一个引力波中的“粒子”性质?理论上讲,引力波和早期图像相似,显示了由许多四处游荡的粒子产生的表现波:那些粒子就是引力子,而激光干涉引力波天文台观测到的是整个波。我们有充足的理由相信我们手上的一系列引力子,是:
·自旋2-粒子,
·无质量,
·以光速传播,
·仅仅通过引力相互作用。
激光干涉引力波天文台对第二个约束条件——无质量——是极其好的:如果引力子有质量,也是小于1.6 x 10^-22 eV/c^2,或是比电子轻约10^28倍。但在我们找到用引力波测试量子引力的方法之前,我们仍不知道波粒二象性中的“粒子”部分是否适用于引力子。
事实上我们有许多机会,尽管激光干涉引力波天文台不太可能实现其中任何一个。你看,量子引力效应是最强最明显的,哪怕当你在非常小的距离也有强大的引力场存在。还有什么比黑洞合并更好的探测方法呢?当两个奇点合并在一起时,这些量子效应——应当是偏离广义相对论的——将会在合并那一刻出现,就在(旋进结束)相之前和(振铃开始)相之后。实际上,我们在探测皮秒级而不是激光干涉引力波天文台敏感的微妙-毫秒级,但这是不可能的。我们开发出了能在飞秒甚至阿秒时间范围内工作的激光脉冲,可以想象如果我们有足够的干涉仪同时工作,便可对微小的偏离相对论现象敏感。这需要科技上的巨大飞跃,包括大量干涉仪,还要显著降噪和提高敏感度。但技术上不是不可能:这仅是技术上的困难!
为了获得更多信息,我做了一个关于引力波,激光干涉引力波天文台以及我们从中所学知识的直播,是和密歇根大学的天文学家在线交谈的。
可能你们会对最后一个问题特别感兴趣,关于我们如何测试引力子的粒子性质,这将完善我们对宇宙中波粒二象性的认识。希望这是真的,但我们不能肯定。希望好奇心能引领我们投于其中,大自然能与我们合作,最后找到答案!
作者: Ethan Siegel
如有相关内容侵权,请于三十日以内联系作者删除
转载还请取得授权,并注意保持完整性和注明出处
,