初三数学概率树状图题格式(中考数学用)(1)

一、显性放回

例1 现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”.第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.

初三数学概率树状图题格式(中考数学用)(2)

分析:

从题中文字“记下数字后放回”知本题属于“显性放回”.本题中的事件是摸两次卡片,看卡片的数字,由此可以确定事件包括两个环节.摸第一张卡片,放回去,再摸第二张卡片,所以树状图应该画两层.

第一张卡片的数字可能是1,2,3等3个中的一个,所以第一层应画3个分叉;

第二次摸取卡片,由于放回,第二个球的数字可能是3个中的一个,所以第二层应接在第一层的3个分叉上,每个小分支上,再有3个分叉.

画出树状图,这样共得到3×3=9种情况,从中找出第二次抽取的数字大于第一次抽取的数字的情况,再求出概率.

二、显性不放回

例2 一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4.小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.

(1)共有几种可能的结果;

(2)请用画树状图的方法求两次摸出的乒乓球的数字之积为偶数的概率.

初三数学概率树状图题格式(中考数学用)(3)

分析:

本题属于“显性不放回”.本题中的事件是摸两个乒乓球,看乒乓球的数字,由此可以确定事件包括两个环节,所以树状图应该画两层.第一个乒乓球的数字可能是1,-2,3,-4等4个中的一个,所以第一层应画4个分叉;由于不放回,第二个乒乓球的数字可能是剩下的3个中的一个,所以第二层应接在第一层的4个分叉上,每个小分支上,再有3个分叉,画出树状图.

三、隐形放回

3、小明骑自行车从家去学校,途经装有红、绿灯的三个路口,假没他在每个路口遇到红灯和绿灯的概率均为,则小明经过这三个路口时,恰有一次遇到红灯的慨率是多少?请用画树状图的方法加以说明.

初三数学概率树状图题格式(中考数学用)(4)

分析:

通过反复分析知本题属于“隐形放回”问题,比较容易出错.其实问题相当于一个口袋里有红球和绿球各1个,放回地随机取三次.本题中的事件是小明骑自行车从家去学校,途经装有红、绿灯的三个路口,由此可以确定事件包括三个环节,所以树状图应该画三层.由于每一个路口可能是红灯,绿灯等2个中的一个,所以每一层的分叉的小分支上都有两个小分叉.

四、隐形不放回

4、小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用,试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.

初三数学概率树状图题格式(中考数学用)(5)

分析:

从文字中稍加分析知,本题属于“隐性不放回”,而且选取时有指明对象,是水笔和橡皮.本题中的事件是小明有3支水笔为红色、蓝色、黑色;有2块橡皮为白色、灰色,取出1支水笔和1块橡皮配套使用.由此可以确定事件包括两个环节,所以树状图应该画两层.至于水笔和橡皮哪个先取,可以随便,不影响结果,关键是各层的分叉要画对.

5、有两个不同形状的计算器(分别记为A,B)和与之匹配的保护盖(分别记为a,6)(如图5所示)散乱地放在桌子上,若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.

初三数学概率树状图题格式(中考数学用)(6)

初三数学概率树状图题格式(中考数学用)(7)

分析:

从文字中理解本题属于“隐性不放回”,而且随机选取没有指明对象是计算器还是保护盖,比较容易出错,本题中的事件是从计算器和保护盖中随机取两个,看恰好匹配.由此可以确定事件包括两个环节,取第一个,不放回去,然后再取第二个,所以树状图应该画两层.取第一个可能是A,B,a,b等4个中的一个,所以第一层应画4个分叉;再看第二层,由于不放回,取第二个可能是剩下的3个中的一个,所以第二层应接在第一层的4个分叉上,每个小分支上,再有3个分叉,画出树状图.

,