很少有人知道,爱因斯坦被引用最多的论文既不是让他获得诺贝尔奖的光电效应,也不是让他闻名遐迩的狭义相对论和广义相对论,而是1935年他与两位同事,鲍里斯·波多尔斯基和内森·罗森一起设计了另一个思想实验,并在美国杂志《物理评论》上发表了一篇题为《我们能认为量子力学对物理实在的描述是完备的吗?》的论文,他们的回答是:“不能!”在这个思想实验里,他们引入了之后被薛定谔命名的“纠缠”概念。

我们用一个稍稍简化了的实验来描述他们的主要论据。我们已经知道,量子论认为在我们没有观察之前,一个粒子的状态是不确定的,它的波函数弥散开来,代表它的概率。但当我们探测以后,波函数坍缩,粒子随机地取一个确定值出现在我们面前。现在让我们想象一个大粒子,它本身自旋为0。但它是不稳定的,很快就会衰变成两个小粒子,向相反的两个方向飞去。我们假设这两个小粒子有两种可能的自旋,分别叫“上”和“下”,那么如果粒子A的自旋为“上”,粒子B的自旋便一定是“下”,以保持总体守恒,反之亦然。好,现在大粒子分裂了,两个小粒子相对飞了出去。但是要记住,在我们没有观察其中任何一个之前,它们的状态都是不确定的,只有一个波函数可以描绘它们。只要我们不去探测,每个粒子的自旋便都处在一种左/右可能性叠加的混合状态,为了方便我们假定两种概率对半分,各50%。

EPR佯谬和薛定谔的猫(EPR佯谬和薛定谔的猫)(1)

现在我们观察粒子A,于是它的波函数一瞬间坍缩了,随机地选择了一种状态,比如说是“上”旋。但是因为我们知道两个粒子总体要守恒,那么现在粒子B肯定就是“下”旋了。问题是,在这之前,粒子A和粒子B之间可能已经相隔非常遥远的距离,比如说几万光年好了。它们怎么能够做到及时地互相通信,使得在粒子A坍缩成“上”的一刹那,粒子B一定会坍缩成“下”呢?量子论的概率解释告诉我们,粒子A选择“上”,那是一个完全随机的决定,两个粒子并没有事先商量好。事实上,这种选择是它被观测的一刹那才做出的,并没有先兆。关键在于,当A随机地做出一个选择时,远在天边的B便一定要根据A的决定而作出相应的坍缩,变成与A不同的状态以保持总体守恒。那么,B是如何得知这一遥远的信息的呢?难道有超过光速的信号来回于它们之间?假设有两个观察者在宇宙的两端守株待兔,在某个时刻t,他们同时进行了观测:一个观测A,另一个同时观测B。那么,这两个粒子会不会因为距离过于遥远,一时无法对上口径而在仓促间做出手忙脚乱的选择,比如两个同时变成了“上”或者“下”?显然是不太可能的,不然就违反了守恒定律。那么是什么让它们之间保持着心有灵犀的默契,当你是“上”的时候,我一定是“下”?

爱因斯坦等人认为,既然不可能有超过光速的信号传播,那么说粒子A和B在观测前是“不确定的幽灵”显然是难以自圆其说的。唯一的可能是两个粒子从分离的一刹那开始,其状态已经客观地确定了,后来人们的观测只不过是得到了这种状态的信息而已,就像经典世界中所描绘的那样。粒子在观测时才变成真实的说法显然违背了相对论的原理,它其中涉及瞬间传播的信号。这个诘难以三位发起者的首字母命名,称为“EPR佯谬”。然而,在量子力学大师玻尔看来,这并不是什么佯谬,而是因为在爱因斯坦的潜意识里,一直有个经典的“实在”影像。他不言而喻地假定,EPR实验中的两个粒子在观察之前,分别都有“客观”的自旋状态存在,就算是概率混合吧,但粒子客观地存在于那里。玻尔的意思是,在观测之前,没有一个什么粒子的“自旋”!因为你没有定义观测方式,那时候谈论自旋的粒子是无意义的,它根本不是物理实在的一部分,这不能用经典语言来表达,只有波函数可以描述。因此,在观察之前,两个粒子——无论相隔多远都好——仍然是一个互相关联的整体!它们仍然必须被看作母粒子分裂时的一个全部,直到观察以前,这两个独立的粒子都是不存在的,更谈不上客观的自旋状态!

薛定谔看到爱因斯坦的EPR论文,和爱因斯坦连续通了几封信,然后他放出了一只一只可怕的怪兽,撕咬人们的理智和神经,这就是令许多人闻之色变的“薛定谔的猫”。薛定谔说:“根据哥本哈根理论,在没有测量之前,一个粒子的状态模糊不清,处于各种可能性的混合叠加,是吧?比如一个放射性原子,它何时衰变是完全概率性的。只要没有观察,它便处于衰变/不衰变的叠加状态中,只有确实进行了测量,它才能随机选择一种状态出现。好得很,那么让我们把这个原子放在一个不透明的箱子中让它保持这种叠加状态。现在薛定谔想象了一种结构巧妙的精密装置,每当原子衰变而放出一个中子,它就激发一连串连锁反应,最终结果是打破箱子里的一个毒气瓶,而同时在箱子里的还有一只可怜的猫。事情很明显:如果原子衰变了,那么毒气瓶就会被打破,猫就被毒死。要是原子没有衰变,那么猫就好好地活着。但这样一来,显然就会有以下的自然推论:当一切都被锁在箱子里时,因为我们没有观察,所以那个原子处在衰变/不衰变的叠加状态。因为原子的状态不确定,所以它是否打碎了毒气瓶也不确定。而毒气瓶的状态不确定,必然导致猫的状态也不确定。只有当我们打开箱子察看,事情才最终定论:要么猫四脚朝天躺在箱子里死掉了,要么它活蹦乱跳地“喵呜”直叫。但问题来了:当我们没有打开箱子之前,这只猫处在什么状态?似乎唯一的可能就是,它和我们的原子一样处在叠加态,也就是说,这只猫当时陷入一种死/活的混合。

EPR佯谬和薛定谔的猫(EPR佯谬和薛定谔的猫)(2)

奇哉怪哉。现在就不光是原子是否是幽灵的问题了,现在猫也变成了幽灵。一只猫同时又是死的又是活的?它处在不死不活的叠加态?这未免和常识太过冲突,同时从生物学角度来讲也是奇谈怪论。如果打开箱子出来一只活猫,要是它能说话,它会不会描述那种死/活叠加的奇异感受?恐怕不太可能。薛定谔的实验把量子效应放大到了我们的日常世界,现在量子的奇特性质牵涉到我们的日常生活了,牵涉到我们心爱的宠物猫究竟是死还是活的问题。这个实验虽然简单,却比EPR要辛辣许多,这一次扎得哥本哈根派够疼的。他们不得不退一步以咽下这杯苦酒:是的,当我们没有观察的时候,那只猫的确是又死又活的。

这的确是一个让人尴尬和难以想象的问题。霍金曾说过:“当我听说薛定谔的猫的时候,我就跑去拿枪。”薛定谔本人在论文里把它描述成一个“恶魔般的装置”。我们已经见识到了量子论那种令人惊异甚至瞠目结舌的古怪性质,但那只是在我们根本不熟悉也没有太大兴趣了解的微观世界而已,可现在它突然要开始影响我们周围的一切了。一个人或许能接受电子处在叠加状态的事实,但一旦谈论起宏观的事物比如我们的猫也处在某种“叠加”状态,任谁都要感到一点畏首畏尾。

,