角平分线的性质
角平分线的性质:角的平分线上的点到角的两边的距离相等.
注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE
11.线段垂直平分线的性质
(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.
(2)性质:①垂直平分线垂直且平分其所在线段. ②垂直平分线上任意一点,到线段两端点的距离相等. ③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.
等腰三角形的性质
(1)等腰三角形的概念
有两条边相等的三角形叫做等腰三角形.
(2)等腰三角形的性质
①等腰三角形的两腰相等
②等腰三角形的两个底角相等.【简称:等边对等角】
③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】
(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.
13.等腰三角形的判定
判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】
说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.
②等腰三角形的判定和性质互逆;
③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;
④判定定理在同一个三角形中才能适用.
,