首先普及一下常识,如图所示:
1、在整个内存空间中,跑着各种各样的程序,有Java程序、C程序,他们共用一块内存空间。
2、对于Java程序,JVM会申请一块堆空间,通过Xmx可以设置,其余空间是堆外空间,其中每个线程有自己的线程栈,保证线程内存隔离,堆空间使用完以后,会触发Full FC,堆外空间所有进程可共享使用,无限制。
3、所有系统运行的程序都必须通过操作系统内核进行IO操作,操作系统也是程序,也需要一定的内存空间。
一、使用Buffer代替基本IO我们写一个方法,此方法使用了FileWriter进行了文件的写操作,我们都知道不调用flush()可能会造成数据丢失,那么为什么呢,flush操作到底做了些什么呢?
public void FileIO() throws Exception {
File file = new File("/Volumes/work/temp/temp.txt");
if (file.exists()) {
file.delete();
}
file.createNewFile();
FileInputStream fileInputStream = new FileInputStream(file);
FileWriter fileWriter = new FileWriter(file);
fileWriter.write("hello");
fileWriter.write("world");
fileWriter.write("\nhello world");
Thread.sleep(99999);
filewriter.flush();
fileWriter.close();
}
我们知道我们在写数据的时候不管是C还是Java都会有两个缓冲区,一个是操作系统的缓冲区sys buffer,还有一个是程序的缓冲区program buffer。那么刚刚的flush操作是把程序的缓冲区内容写到了系统缓冲区,还是把系统缓冲区的内容刷到了硬盘呢?因此我们在调用flush()之前进行了sleep操作,检查在flush之前,具体的内容并未写到temp.txt文件中,当我们睡眠时间结束后,可以看到调用flush方法后则把内容写到了文件中,如图:
实际上FileWriter基本IO是没有先写程序缓存的,那么实际上FileWriter的每次write操作都发生了系统调用,直接写到了内核的系统缓冲区,然后当调用flush操作时,系统缓冲区的内容再刷到了硬盘上。
关于C/C Linux后台服务器开发高级架构师学习视频 点击 正在跳转 获取,内容知识点包括Linux,Nginx,ZeroMQ,MySQL,Redis,线程池,MongoDB,ZK,Linux内核,CDN,P2P,epoll,Docker,TCP/IP,协程,DPDK等等。免费学习地址:C/C Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂
因此IO性能提升第一步:无论是InputStream还是FileWriter,都是底层的IO,是直接调用内核的,因此写入都是直接写入到内核的系统buffer,因此在使用IO的时候不要使用这类底层IO,否则发生大量系统调用,降低系统性能,而是应该先写到程序buffer然后再调用系统IO,当程序buffer满了后才通过系统调用写到系统buffer空间中,这样减少了大量系统调用,提升了性能。
那么什么时候系统buffer中的数据才写入到硬盘呢?2种情况:①.系统buffer满了;②.执行了flush()操作,也就是发生了fsync的系统调用。
public void bufferedIO() throws Exception {
BufferedOutputStream bufferedOutputStream = new BufferedOutputStream(new FileOutputStream(file), 1024);
BufferedReader reader = new BufferedReader(new FileReader(file));
bufferedOutputStream.write("hello world\nhello world".getbytes());
bufferedOutputStream.flush();
bufferedOutputStream.close();
String line = reader.readLine();
System.out.println(line);
}
还有另一种是直接写入到内存的,如代码:
public void memoryIO() throws Exception {
ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream(1024);
// 字节数组输出流在内存中创建一个字节数组缓冲区,所有发送到输出流的数据保存在该字节数组缓冲区中。可以通过toString()和toByteArray()获取数据
byteArrayOutputStream.write("hello world".getBytes());
String string = byteArrayOutputStream.toString();
System.out.println(string);
byte[] inData = byteArrayOutputStream.toByteArray();
ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(inData);
byte[] data = new byte[1024];
byteArrayInputStream.read(data);
System.out.println(new String(data));
byteArrayOutputStream.flush();
byteArrayOutputStream.close();
}
这样就类似于Redis一样,是对内存进行直接操作,因此这样也能提高不少效率。
二、堆外内存mmap直接映射内核空间如下图:
1、如果数据在堆内,那么在写入磁盘时,会先序列化后拷贝到堆外,然后堆外再write到系统内核缓冲区,内核缓冲区通过系统调用fsync写入到磁盘;
2、如果数据是在堆外内存,那么也需要先拷贝到内核缓冲区,在fsync系统调用后也才写入到磁盘;
3、通过系统调用mmap申请一块虚拟的地址空间,这片空间用户程序和系统内核都可以访问到。
如下代码:
public void randomIO() throws Exception{
RandomAccessFile randomAccessFile = new RandomAccessFile(file,"rw");
randomAccessFile.write("hello world\nhello chicago\nhello ChengDu".getBytes());
FileChannel channel = randomAccessFile.getChannel();
/**
* 堆外的数据如果想写磁盘,通过系统调用,经历数据从用户空间拷贝到内核空间
* 堆外mapedBuffer的数据内核直接处理
*/
// 分配在了堆上 heap空间
// ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
// 分配在了堆外 offheap空间
// ByteBuffer byteBuffer = ByteBuffer.allocateDirect(1024);
//mmap 内核系统调用 堆外空间,直接映射
MappedByteBuffer byteBuffer = channel.map(FileChannel.MapMode.READ_WRITE,0,2018);
byteBuffer.put("byteBuffer testing".getBytes());
randomAccessFile.seek(12);
randomAccessFile.write("*****".getBytes());
}
可以看到通过FileChannel的map方法实现系统调用,申请mmap直接映射空间,数据无需由用户空间拷贝到系统空间,节省了一次拷贝的时间损耗,提升了性能。
三、sendfile零拷贝在Linux系统中。存储在文件中的信息通过网络传送给客户这样的简单过程中,所涉及的操作。下面是其中的部分简单代码:
read(file, tmp_buf, len);
write(socket, tmp_buf, len);
其实过程中实现了多次拷贝,性能很低,如图可知:
步骤一:系统调用read导致了从用户空间到内核空间的上下文切换。DMA模块从磁盘中读取文件内容,并将其存储在内核空间的缓冲区内,完成了第1次复制。
步骤二:数据从内核空间缓冲区复制到用户空间缓冲区,完成了第2次复制,之后系统调用read返回,这导致了从内核空间向用户空间的上下文切换。此时,需要的数据已存放在指定的用户空间缓冲区内(参数tmp_buf),程序可以继续下面的操作。
步骤三:系统调用write导致从用户空间到内核空间的上下文切换。数据从用户空间缓冲区被再次复制到内核空间缓冲区,完成了第3次复制。不过,这次数据存放在内核空间中与使用的socket相关的特定缓冲区中,而不是步骤一中的缓冲区。
步骤四:系统调用返回,导致了第4次上下文切换。第4次复制在DMA模块将数据从内核空间缓冲区传递至协议引擎的时候发生,这与我们的代码的执行是独立且异步发生的。你可能会疑惑:“为何要说是独立、异步?难道不是在write系统调用返回前数据已经被传送了?write系统调用的返回,并不意味着传输成功——它甚至无法保证传输的开始。调用的返回,只是表明以太网驱动程序在其传输队列中有空位,并已经接受我们的数据用于传输。可能有众多的数据排在我们的数据之前。除非驱动程序或硬件采用优先级队列的方法,各组数据是依照FIFO的次序被传输的(图1中叉状的DMA copy表明这最后一次复制可以被延后)。
因此就诞生了零拷贝:
sendfile(socket, file, len);
如图:
步骤一:sendfile系统调用导致文件内容通过DMA模块被复制到内核缓冲区中。
步骤二:记录数据位置和长度的描述符被加入到socket缓冲区中,DMA模块将数据直接从内核缓冲区传递给协议引擎。
基于以上实现,最终实现了“零拷贝”。
高性能IO应用在现实应用中,Kafka常用来进行日志处理,存在着大量的IO,其高性能就是建立在IO上的优化,如图:
,