免费游戏世界中的参数很容易让人感到混淆,因为这里有无数参数并且还有许许多多有关这一主题的介绍文章。许多开发者甚至选择完全放弃参数追踪或者只是遵循着《游戏开发者需要铭记的15个游戏参数》,并且不再进行更深入的分析。还有些开发者会专注于自己的分析并希望从每日甚至每个小时的动态中找出趋势所在。考虑到大多数免费游戏的自然属性,这就好似将一只鸡开膛破肚并尝试着从它的内脏中看清楚游戏是否能够取得成功一样。

之所以会出现这种混淆是有原因的:游戏产业呈献给了我们一种源于基准且非常复杂的参数语言。这便是所有游戏会议报告会出现的内容。这也是所有分析包所衡量的内容。

但这却没有多大用处。

产业参数并不会告诉你任何有关你的免费游戏虚拟经济的状态。结果便是你找不到任何能够向你解释如何使用参数去完善游戏的特定指南。除了那些拥有资源去创造自己内部分析系统的大型发行商外,所有开发者,甚至是整个产业都会因为这种模糊的内容而受伤。

让我进一步向你们解释。

关于分析的简单描述

也许上面的段落听起来有点轻浮,所以让我再添加一些简单但却重要的修饰内容:一个基本分析包能够追踪到像ARPPU,转换率以及其它值得所有开发者关注的标准参数。现在市场上有许多分析服务提供者,他们中的大多数人都能够免费,或近乎免费地帮助我们追踪这些重要参数。

尽管这些基本分析并不能告诉你你的虚拟经济的状态,但它们还是非常重要的:例如你总是希望能够了解你的游戏相对其它游戏的性能。或者你也可以追踪到像你想要获得多少玩家并在软发行时创造出多少用户留存等内部目标,如此你才能更好地决定何时去推动用户获取。产业标准数据也能帮助你的投资者去判断你的游戏是否值得获得更多资源。

让我们以三个标准参数为例并着眼于它们所缺乏的元素:

首先说说ARPDAU

日活跃用户平均收益(ARPDAU)是手机/免费游戏中最常出现的参数。值得肯定的是这是一种有用的参数,它能帮助你了解游戏每天的表现,同时这也是你在经历任何用户获取活动之前和之后去追踪相关参数的关键指标。

当然了还有很多东西是ARPDAU并未告诉我们的:例如付费玩家是否会在某一天再次购买东西?广告和应用内部购买各创造了多少收益,这些收益在整体玩家基础中的分配是怎样的?

当你的ARPDAU下降时你要做什么?我想首先你会去修改游戏,但是你要怎么修改,该修改哪里?如果下降数量不多,你可以再观察看看数值是否会恢复。如果下降数量很多,你便需要开始寻找原因。

ARPPU

每付费用户平均收益(ARPPU)只能计算那些在游戏中花钱的用户。如此看来它比ARPDAU参数更有用些。但是再一次地,ARPPU的作用也很局限,因为基于不同游戏类型ARPPU的作用也是不同的。就像硬核和中核游戏(注:主要是策略游戏,RPG游戏盒射击游戏)拥有更高的盈利参数,但在休闲游戏中这就没什么用了。

就像《战争游戏:火力时代》的ARPPU值便远高于《Candy Crush》—-即使这两款游戏在去年所赚取的收益是持平的。

转换率是否有价值?

ARPDAU和ARPPU能够帮助你明确付费玩家能够为你创造多少收益,而转换率则能够计算在特定时期内在总用户中有多少特殊用户在游戏中花钱了。(你也可以计算免费游戏中的广告转换率。)让用户在他们可以免费玩的游戏中花真钱是非常困难的事,如果你能够获得5%的转换率,这就说明你做的很好了。所以这是衡量一款免费游戏在市场上的表现的有效基准。

但再一次地,转换率也并非一种全面的参数。就像在其它产业中那样,在免费游戏中重复的消费者创造了绝大部分的收益。如果你让5%的玩家一个月在游戏中进行一次IAP然后便能够获得成功,那么这些玩家将不会在游戏中进行多次购买。

最终我们会发现这三种参数都是虚势—-这是开发者在GDC趴上喝了几杯酒后会自夸的一些内容。他们可能会告诉你是否要去获取用户,但是他们不会指出你的游戏中存在的任何问题。

更糟糕的是,尽管ARPDAU,ARPPU和转换率都是经济参数,但是它们却都不能清楚地告诉你玩家是如何看待你的游戏内部经济,他们在游戏中购买了什么,以及他们是否会再次消费。而这些恰恰才是提高你的游戏收益的关键,所以了解ARPDAU,ARPPU和转换率并不能帮助你真正做到这点。漏斗参数也是如此,即虽然能够用于衡量市场营销以及用户流失的地方,但却不能清楚地向你解释原因。

为什么我们所使用的游戏参数如此有限

我们该如何使用如此有限的参数而发展?这需要进行更多的解释,因为我们首先需要基于两条轴线去考虑这些参数:

特定游戏vs一般游戏:前者指的是一些特殊游戏或定位明确的游戏子类型,而后者则指代所有游戏,甚至是一些非游戏应用。

警示vs基准vs诊断vs控制:像ARPPU,ARPDAU和转换率都属于警示和基准类别,即将告知开发者他们的游戏在产业标准下的盈利表现。而漏斗参数属于诊断型,即能够指出用户体验中的问题,其中控制参数是最有用的,能够真正明确一些特殊的相互作用。我认为这便是问题产生的根源。

为什么现在的游戏偏经济型(为什么基于产业标准的游戏参数变得不那么重要)(1)

从上述表格中我们可以发现,如果开发者要去讨论在自己的特定游戏中怎样的参数最重要是非常困难且费时的,而即使他们能够这么做,他们也会因为担心将更多特殊方法泄露给竞争者而不敢这么做。他们也总是不愿去正视一些糟糕的参数。与此同时像Flurries和App Annies都拥有专注于适合大众消费的警示和基准参数的有效服务。

结果呢?我们讨论了一些公共参数并引用了一些使用了这些参数的公司。尽管开发者可以在许多分析服务中添加一些定制要求,但是对于该添加什么内容却不存在真正有效的指南,因为这是不在公众谈论范围中的。如果你在考虑如何与你的首席执行官谈论游戏或者与外部人员谈论游戏,你最好去使用一些通用参数。

但这些便都不属于控制参数,即那些真正对开发者有利的参数。这才是真正的问题所在。我们拥有的是一个完全基于警示和基准参数所创造的复杂参数语言。

朝着基于控制的游戏参数

我们的产业真正需要的是围绕着对游戏成功最有帮助的参数而展开的公共交谈。

我们将开始看到一些致力于创造这些目标的分析/盈利服务。例如DeltaDNA面向免费游戏发行商Thumbspire的案例研究。他们基于产业标准衡量了第一天的用户留存并发现其数值较低,所以他们继续进行一次定性分析。从中他们发现20%的玩家会在教程期间离开游戏,他们便知道该为首次游戏的玩家完善这部分内容。于是他们的第一天用户留存便提高了66%。如此看来我们或许可以创造一个像“废弃教程”的参数作为和转换率一样普遍的标准参数?

,