上升/下降时间为30ns至60ns的传统平面或沟槽MOSFET开关,逐渐被超结MOSFET等开关时间小于5ns的功率开关所取代。要查看这种快速转换,通常需要使用至少1GHz带宽的示波器,但目前市售的示波器探头带宽一般小于300MHz。此外,高频电压和电流探头通常价格昂贵。因此,对于中型企业的电源工程师来说,最好的办法是自己制作示波器探头。
为了观察快速变化的波形,示波器的带宽至少要达到1GHz。遗憾的是,大多数商用电压和电流探头都无法在这么高的频率下工作。
随着现代电源的工作频率越来越高,工程师们已经开始采用高频功率开关和整流器技术。上升/下降时间为30ns到60ns的传统平面或沟槽MOSFET开关逐渐被超结MOSFET、GaN MOSFET、SiC MOSFET和SiC肖特基整流管等开关时间不到5ns的功率开关所取代。
为观察如此快速的变化,通常需要带宽至少1GHz的示波器。遗憾的是,大多数商用的电压和电流探头无法在这么高的频率下工作。普通示波器探头的带宽不到300MHz,电流探头的带宽可能只有60MHz至100MHz甚至更小。此外,高频电压探头的成本通常在12000美元以上,而稍微好一点的电流探头至少要4000美元。对于在中小规模公司上班的电源工程师来说,只有一条路:自己做探头。设计和制作高频电压和电流探头需要很好地理解射频、寄生效应、传输线理论和场论。
图1:普通电压示波器探头用一根地线夹到待测电路。
其实你可以自己做一个50Ω的电压探头,自制50Ω电压探头可以帮助你更好地定义和理解电路中发生的事件。自制50Ω电压探头的总体目标是:
•构建一条从电路到示波器的干净高频信号路径; •沿着信号路径提供尽可能实用的屏蔽; •能够控制尽可能多的寄生影响。
1:1 屏蔽同轴电压探头
对低于示波器输入端最大额定输入电压的信号,可以用一段剪下来的50Ω BNC同轴电缆作为探头。未屏蔽的中心导体和带屏蔽的尾部长度不能超过1英寸(25mm),以便最大限度减小噪声拾取。要想观察特定节点的信号,可以将中心导体直接焊接到该节点上;地线应该焊接到最近的关联地上,也就是说,不能连接到在探头和目标节点之间有很长pcb走线的地。这种探头只能提供从目标电路到示波器的高频信号屏蔽。示波器的输入终端电阻应该是1MΩ。图2显示了这种1:1屏蔽探头的设计。
图2:基于同轴电缆的1:1屏蔽式电压探头。探头上的电感(LUS)和地线(LG)会限制带宽,但由于尺寸小,有助于减少噪声拾取。
n:1 50Ω电压探头
n:1探头主要用于信号幅度(包括任何尖峰)超过示波器输入放大器最大额定电压的情况,这种探头制作起来稍微复杂一些。其简化后的原理图如图3所示。
图3:简化后的n:1电压探头原理图,其中的串联电阻RS需要一定的计算才能确定值的大小。
因此首先也是重要的一步是确定这个检测电阻(RS)的大小。这可不是想像的那么简单,有多个因素需要考虑。
将示波器的输入终端电阻设为50Ω,这样示波器内部的50Ω终端电阻就成为了分压电路的底部电阻。你完全可以放心地认为这个电阻的精度超过0.1%。其功耗不应超过0.25W。这个额定功率决定了能够进入示波器输入端的最大电流值。
其它考虑因素包括:
•50Ω终端电阻上的信号最大幅度 •串联检测电阻(RS)的功耗 •输入电路上的负载
所有这些因素彼此之间必须取得平衡,它们将确定示波器输入放大器的增益设置。如果信号太低,示波器的输入增益必须设置在小于100mV的范围。由于输入信号非常接近输入放大器的本底噪声,因此显示的信号会带很多噪声,从而导致ADC输入分辨率降低。信号可能只能被ADC(假设是8位的ADC)的低四位比特捕获,最终你会看到最低有效位(LSB)的量化步骤。这种情况难以避免,特别是对具有高降压比的探头。图4显示了一个1000:1 50Ω探头的典型波形。
图4:低电平示波器迹线通常会显示输入信号上的量化噪声。
图5显示了n:1电压探头的基本结构。
图5:n:1 50Ω探头在靠近探头顶部的位置有一个1/4W的电阻。
设计n:1探头时需要遵循以下步骤。
首先,根据想要的通道增益设置值确定电阻的衰减比值,以达到一个比较合适的示波器信号幅度(包括尖峰)。通常选择十倍的电阻衰减比值,因为显示的v/div设置只在输入电压的小数点位置上有区别。
典型的输入幅度不应超过内部输入50Ω终端电阻的额定功率。为了产生想要的通道电压,电流必须流过50Ω终端电阻。
功率必须小于终端电阻的额定功率:
检测电阻(R1)值的计算公式:
现在检查一下检测电阻的功耗。
检查你想看的电路负载,你必须理解和确定对目标电路的影响。如果探头消耗太多的检测电流,就会改变目标电路的工作,有时这种改变还很显著。经验法则是:
有时候初始考虑条件都满足了,但探头使目标电路发生了过载。在这种情况下,你必须回到步骤1,并选用小于初始电流的检测电流。
源自《电子技术设计》2017年11月刊
点击下面“了解更多”
,