随着净化市场越来越受到关注,各个品牌都相继推出自己的净化器产品,为了博得消费者的关注,在宣传中也都有自己的“核心技术”,有说自己滤网材质好的,有说自己滤网材质独特的,有说自己滤网厚的,也有说自己释放出好几百万负离子的,独有静电集尘多么强悍的!但是这些五花八门的说法其实都是大同小易,净化器离不开滤网效果,净化技术也就那么几样,处于环境保护的关系,大多数专利在国际上都是公开的,也就是说,如果真有什么创新式技术的,绝对是需要花费大量科研去公关的,也不会是一朝一夕的事情,所以,小编个人很怀疑,那些突然冒出来做净化器的品牌,真的有宣传的那些东西么?

这里,因为自己本身是从业者,说的可能并不全面,今天先找了日本某金品牌(避免广告嫌疑)的空气净化器尝试分析下,选择的理由有三点:第一,之前说了,小编本身也是该行业从业者,有过一定接触;第二,某金这个品牌相对低调,没有什么宣传,大多数人对它比较陌生,这里拿来分析可以避免不必要的“争锋相对”;第三,该品牌据说从1975年就开始生产净化器了,相信会更有研究价值。

这里可以看出,首先他是一种等离子技术,主要作用是放出大量的高速电子,与空气中的氧,氮分子结合,产生具有氧化分解能力的物质。

银离子净化器的原理(猜测某金空气净化器中流光能到底是何技术)(1)

(百度百科:)等离子体是指处于电离状态的气态物质,其中带负电荷的粒子(电子、负离子)数等于带正电荷的粒子(正离子)数。通常与物质固态、液态和气态并列,称为物质第四态。通过气体放电或加热的办法,从外界获得足够能量,使气体分子或原子中轨道所束缚的电子变为自由电子,便可形成等离子体。

主要特点为:

①等离子体中具有正、负离子,可作为中间反应介质。特别是处于激发状态的高能离子或原子,可促使很多化学反应发生。

②由于任何气态物质均能形成等离子体,所以很容易调整反应系统气氛,通过对等离子介质的选择可获得氧化气氛、还原气氛或中性气氛。

③等离子体本身是一种良导体,所以能利用磁场来控制等离子体的分布和它的运动,这有利于化工过程的控制。

④热等离子体提供了一个能量集中、温度很高的反应环境。温度为104~105℃的热等离子体是目前地球上温度最高的可用热源。它不仅可以用来大幅度地提高反应速率,而且还可借以产生常温条件下不可能发生的化学反应。此外,热等离子体中的高温辐射能引起某些光电反应。

这里可以看出,至少介绍中还是比较靠谱的,确实有氧化分解的作用,而室内甲醛,甲苯,TVOC这类气态污染物也确实都能被氧化分解掉。从字面理解来看,流光能技术还是靠谱的。

但是根据介绍,等离子产生,发生的过程中产生大量的热量与光热辐射,小编不是学化学的,猜测可能会产生不利于健康的影响,这样明显的漏洞,某金有没有注意到呢?

小编有带着好奇心再去研究了下,有了重大发现!

银离子净化器的原理(猜测某金空气净化器中流光能到底是何技术)(2)

低温等离子体!!

(百度百科:)低温等离子体放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体,也叫非平衡态等离子体。

低温等离子体中能量的传递大致为:电子从电场中得到能量,通过碰撞将能量转化为分子的内能和动能,获得能量的分子被激发,与此同时,部分分子被电离,这些活化了的粒子相互碰撞从而引起一系列复杂的物理化学反应。因等离子体内富含的大量活性粒子如离子、电子、激发态的原子和分子及自由基等,从而为等离子体技术通过化学反应处理异味物质提供了条件。它是基于放电物理、放电化学、反应工程学的学科之上的交叉学科。近几十年来,有关等离子体技术的研究非常活跃,为合成新物质、新材料及环境污染治理等提供了一种新技术、新方法和新工艺。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

银离子净化器的原理(猜测某金空气净化器中流光能到底是何技术)(3)

根据小编的分析,低温等离子体才是流光能技术的本质,也就是说,流光能技术的主要目的应该就是产生大量非平衡态等离子体,从来净化气态污染物!(这样这个技术看来就相当靠谱了!)

小编本来还想去搜索下,专利方面的信息,结果没有找到相关的专利号信息,没办法完成查询……

中途又去找了下日本相关方面的技术介绍,发现某普品牌的产品也采用相关技术,净离子群,还用于冰箱保鲜除异味等方面,查验了相关资料,确实低温等离子技术应用在各项领域中,主要是净化,除异味,工业除尘,静电除尘,保鲜等等方面。这项技术起源于日本,在日本也应用非常广,研究也领先世界水平,不愧于“国际加工厂”的称号。

由于这项技术应用发展非常广,也解决了很多世界难题,关于这项技术的发展研究特别多,特别是关于净化方面的,从这方面来讲,某金采用的这项技术确实是世界一流的净化技术,值得肯定!

参考文献

[1]Tonks, L. and Langmuir, I. (1929) A general theory of the plasma of an Arc. Physical Review, 34, 876-922.
[2]Fauchais, P. and Vardelle A. (1997) Thermal plasmas. IEEE Transactions on Plasma Science, 25, 1258-1280.
[3]Denes, F.S. and Manolache, S. (2004) Macromolecular plasma-chemistry: An emerging field of po-lymer science. Progress in Polymer Science, 29, 815-885.
[4]Vandenbroucke, A.M., Morent, R., De Geyter, N. and Leys, C. (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of hazardous materials, 195, 30-54.
[5]Ogata, A., Ito, D., Mizuno, K., Kushiyama, S. and Yamamoto, T. (2001) Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Transactions on Industry Applications, 37, 959-964.
[6]Einaga, H., Ibusuki, T. and Futamura, S. (2001) Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition. IEEE Transactions on Industry Applications, 37, 1476-1482.
[7]Oda, T., Takahahshi, T. and Yamaji, K. (2002) Nonthermal plasma processing for dilute VOCs de-composition. IEEE Transactions on Industry Applications, 38, 873-878.
[8]Zhao, G.B., John, S., Zhang, J.J., Wang, L., Muknahallipatna, S., Hamann, J.C., Ackerman, J.F., Argyle, M.D. and Plumb, O.A. (2006) Methane conversion in pulsed corona discharge reactors. Chemical Engineering Journal, 125, 67-79.
[9]Zhang, X., Feng, W., Yu, Z., Li, S., Zhu, J. and Yan, K. (2013) Comparison of styrene removal in air by positive and negative DC corona discharges. In-ternational Journal of Environmental Science and Technology, 10, 1377-1382.
[10]Akishev, Y., Grushin, M., Napar-tovich, A. and Trushkin, N. (2002) Novel AC and DC non-thermal plasma sources for cold surface treatment of polymer films and fabrics at atmospheric pressure. Plasmas and Polymers, 7, 261-289.
[11]Feng, F., Ye, L., Liu, J. and Yan, K. (2013) Non-thermal plasma generation by using back corona discharge on catalyst. Journal of Electrostatics, 71, 179-184.
[12]任春生 (2008) 常压空气辉光放电的形成和介质阻挡放电聚合物表面处理研究. 博士论文, 大连理工大学, 大连.
[13]罗强强, 解光勇, 全汝岱, 马晓娜 (2009) 电晕放电法制备臭氧技术研究. 信息技术, 4, 18-20.
[14]朱益民, 杨树, 黄丽萍, 张零零, 唐晓佳, 李想 (2010) 电晕放电及催化法净化室内空气. 环境科学与技术, 6, 86-88.
[15]邵瑰玮, 李劲, 王万林, 李胜利 (2004) 脉冲电晕放电下焦化废水脱硫的研究. 环境科学, 2, 77-80.
[16]朱文苑, 曾金芳, 王斌 (2009) 电晕方法在聚合物表面处理中的应用进展. 化工新型材料, 7, 7-8.
[17]Stryczewska, H.D., Jakubowski, T., Kalisiak, S., Giżewski, T. and Pawlat, J. (2013) Power systems of plasma reactors for non-thermal plasma generation. Journal of Advanced Oxidation Technologies, 16, 52-62.
[18]Kunhardt, E.E. (2000) Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Transactions on Plasma Science, 28, 189-200.
[19]Wang, J.J., Choi, K.S., Feng, L.H., Jukes, T.N. and Whalley, R.D. (2013) Recent developments in DBD plasma flow control. Progress in Aerospace Sciences, 62, 52-78.
[20]Laroussi, M., Alexeff, I., Richardson, J.P. and Dyer, F.F. (2002) The resistive barrier discharge. IEEE Transactions on Plasma Science, 30, 158-159.
[21]Akishev, Y., Goossens, O., Callebaut, T., Leys, C., Napartovich, A. and Trushkin, N. (2001) The influence of electrode geometry and gas flow on corona-to-glow and glow-to-spark threshold currents in air. Journal of Physics D: Applied Physics, 34, 2875.
[22]Schoenbach, K.H., Verhappen, R., Tessnow, T., Peterkin, F.E. and Byszewski, W.W. (1996) Microhollow cathode dis- charges. Applied Physics Letters, 68, 13-15.
[23]Koide, M., Horiuchi, T., Inushima, T., Lee, B.J., Tobayama, M. and Koinuma, H. (1998) A novel low temperature plasma generator with alumina coated electrode for open air material processing. Thin Solid Films, 316, 65-67.
[24]蔡忆昔, 王军, 刘志楠, 赵卫东, 吴江霞, 王攀 (2006) 介质阻挡放电等离子体发生器的负载特性. 高电压技术, 10, 62-64.
[25]刘道清, 季学李 (2004) 低温等离子体技术及在空气污染控制中的应用. 四川环境, 3, 1-4.
[26]Aguado, S., Polo, A.C., Bernal, M.P., Coronas, J. and Santamarı́a, J. (2004) Removal of pollutants from indoor air using zeolite membranes. Journal of Membrane Science, 240, 159-166.
[27]Ogata, A., Einaga, H., Kabashima, H., Futamura, S., Kushiyama, S. and Kim, H.H. (2003) Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air. Applied Catalysis B: Environmental, 46, 87-95.
[28]Demidiouk, V., Moon, S.I. and Chae, J.O. (2003) Toluene and butyl acetate removal from air by plasma-catalytic system. Catalysis Communications, 4, 51-56.
[29]Ding, H.X., Zhu, A.M., Yang, X.F., Li, C.H. and Xu, Y. (2005) Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas. Journal of Physics D: Applied Physics, 38, 4160.
[30]Van Durme, J., Dewulf, J., Leys, C. and Van Langenhove, H. (2008) Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 78, 324-333.
[31]郭玉芳, 叶代启, 陈克复 (2005) 挥发性有机化合物(VOCs)的低温等离子体-催化协同净化. 工业催化, 11, 1-5.
[32]李歆, 黄海涛, 丁凝 (2008) 非热平衡等离子体处理VOCs的研究. 能源环境保护, 6, 5-9.
[33]邰德荣, 韩宾兵 (1999) 电子束烟气脱硫技术工业示范工作进展. 环境科学进展, 2, 125-135.
[34]余刚, 余奇, 翟晓东, 顾璠, 徐益谦 (2005) 等离子体脱硝与等离子体-催化联合脱硝的对比实验研究. 动力工程, 2, 284-288.
[35]王川, 唐晓龙, 易红宏, 李凯, 陈晨, 向瑛 (2013) 低温等离子体分解脱除NO影响因素研究. 环境科学学报, 10, 2694-2698.
[36]Nasonova, A., Pham, H.C., Kim, D.J. and Kim, K.S. (2010) NO and SO2 removal in non-thermal plasma reactor packed with glass beads-TiO2 thin film coated by PCVD process. Chemical Engineering Journal, 156, 557-561.
[37]Basfar, A.A., Fageeha, O.I., Kunnummal, N., Chmielewski, A.G., Pawelec, A., Zimek, Z. and Warych, J. (2010) A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology. Nukleonika, 55, 271-277
[38]Shang, K.F., Wu, Y., Li, J., Li, G.F., Li, D. and Wang, N.H. (2006) Reduction of NOx/SO2 by wire-plate type pulsed discharge reactor with pulsed corona radical shower. Plasma Chemistry and Plasma Processing, 26, 443-454.
[39]Chmielewski, A.G., Licki, J., Pawelec, A., Tymiński, B. and Zimek, Z. (2004) Operational experience of the industrial plant for electron beam flue gas treatment. Radiation Physics and Chemistry, 71, 441-444.
[40]Takaki, K., Chang, J.S. and Kostov, K.G. (2004) Atmospheric pressure of nitrogen plasmas in a ferroelectric packed bed barrier discharge reactor. Part I. Modeling. IEEE Transactions on Dielectrics and Electrical Insulation, 11, 481- 490.
[41]Lin, H., Huang, Z., Shangguan, W. and Peng, X. (2007) Temperature-programmed oxidation of diesel particulate matter in a hybrid catalysis-plasma reactor. Proceedings of the Combustion Institute, 31, 3335-3342.
[42]于文英, 刘波, 单宝龙 (2011) 一种多元催化系统对柴油机排气净化研究. 汽车技术, 1, 25-29.
[43]郑超, 徐羽贞, 黄逸凡, 刘振, 闫克平 (2013) 低温等离子体灭菌及生物医药技术研究进展. 化工进展, 9, 2185- 2193.
[44]Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M. and Yahia, L.H. (2001) Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics, 226, 1-21.
[45]陈军海 (2011) 低温等离子体处理废液技术研究概述. 污染防治技术, 4, 44-45.
[46]何正浩, 邵瑰玮, 王万林, 李劲, 李胜利, 杨怀远, 张瑜, 杜建敏 (2003) 脉冲电晕放电处理焦化废水的研究. 高电压技术, 4, 29-31.
[47]Mountouris, A., Voutsas, E. and Tassios, D. (2006) Solid waste plasma gasification: Equilibrium model development and exergy analysis. Energy Conversion and Management, 47, 1723-1737.
[48]杨丽丽, 田向勤, 刘昕, 朱书全, 舒新前 (2006) 低温等离子体技术在固体废弃物处理中的应用. 环境与可持续发展, 5, 58-60.
[49]李国平, 胡志军, 李建军, 杨振亚, 何忠, 王志良 (2013) 低温等离子体-催化协同净化有机废气研究进展. 环境工程, 3, 71-75.
[50]竹涛, 李坚, 金毓鉴, 梁文俊 (2009) 高频介质阻挡放电反应器结构研究. 高压电器, 4, 16-20.
[51]Wang, H., Li, D., Wu, Y., Li, J. and Li, G. (2009) Removal of four kinds of volatile organic compounds mixture in air using silent discharge reactor driven by bipolar pulsed power. Journal of Electrostatics, 67, 547-553.
[52]Chae, J.O., Demidiouk, V., Yeulash, M., Choi, I.C. and Jung, T.G. (2004) Experimental study for indoor air control by plasma-catalyst hybrid system. IEEE Transactions on Plasma Science, 32, 493-497.
[53]党小庆, 刘晓, 黄家玉, 吴涛, 康露 (2012) 吸附联合低温等离子体法去除甲苯废气. 环境工程学报, 9, 3223- 3228.
[54]周志培 (2009) 介质阻挡放电脱除烟气中NO的实验研究. 硕士论文, 华北电力大学, 北京.
[55]Futamura, S., Zhang, A., Einaga, H. and Kabashima, H. (2002) Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catalysis Today, 72, 259-265.
[56]徐兴祥, 杨永进, 孙家言, 张劲松 (2005) 微波复合直流等离子体转化天然气制乙炔的研究. 化学学报, 7, 625- 630.
[57]杜彬, 杨熙, 李丰, 康小孟, 梁建友 (2012) 低温等离子体脱除液化气中硫醇的研究. 辽宁化工, 12, 1238-1239.
[58]Ogata, A., Shintani, N., Mizuno, K., Kushiyama, S. and Yamamoto, T. (1999) Decomposition of benzene using a nonthermal plasma reactor packed with ferroelectric pellets. IEEE Transactions on Industry Applications, 35, 753-759.
[59]Kim, J.C. (2002) Factors affecting aromatic VOC removal by electron beam treatment. Radiation Physics and Chemistry, 65, 429-435.
[60]Yamashita, R., Takahashi, T. and Oda, T. (1996) Humidify effect on non-thermal plasma processing for VOCs decomposition. 31st IAS Annual Meeting Industry Applications Conference, San Diego, 6-10 October 1996, 1826-1829.
[61]周勇平, 高翔, 吴祖良, 骆仲泱, 魏恩宗, 倪明江, 岑可法 (2003) 直流电晕自由基簇射治理甲苯的试验研究. 环境科学, 4, 136-139.
[62]Holzer, F., Kopinke, F.D. and Roland, U. (2005) Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chemistry and Plasma Processing, 25, 595- 611.
[63]Zhao, L., Wang, Y., Jin, L., Qin, M., Li, X., Wang, A., Song, C. and Hu, Y. (2013) Decomposition of hydrogen sulfide in non-thermal plasma aided by supported CdS and ZnS semiconductors. Green Chemistry, 15, 1509-1513.
[64]孙毅, 王东辉, 白书培, 贾佳, 秦越, 金君素, 张泽廷 (2011) 低温等离子体协同催化剂催化氧化一氧化碳的研究. 精细石油化工, 4, 27-31.
[65]王健壮, 贾春玲, 吴爽, 宁晓宇, 翟增秀 (2013) 低温等离子体技术在恶臭治理方面的研究进展. 环境科技, 3, 74-78.
[66]Yamamoto, T., Mizuno, K., Tamori, I., Ogata, A., Nifuku, M., Michalska, M. and Prieto, G. (1996) Catal-ysis-assisted plasma technology for carbon tetrachloride destruction. IEEE Transactions on Industry Applications, 32, 100-105.
[67]Song, Y.H., Kim, S.J., Choi, K.I. and Yamamoto, T. (2002) Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs. Journal of Electrostatics, 55, 189-201.
[68]Katamoto, A., D., Doi, K. and Kogoshi, S. (2003) Efficient NOx removal using silent discharges and TiO2 photocatalyst simultaneously. IEEE International Conference on Plasma Science, Jeju, 2-5 June 2003, 284.
[69]Huang, H. and Ye, D. (2009) Combination of photocatalysis downstream the non-thermal plasma reactor for oxidation of gas-phase toluene. Journal of Hazardous Materials, 171, 535-541.
[70]Sun, R.B., Xi, Z.G., Chao, F.H., Zhang, W., Zhang, H.S. and Yang, D.F. (2007) Decomposition of low-concentration gas-phase toluene using plasma-driven photocatalyst reactor. Atmospheric Envi-ronment, 41, 6853-6859.
[71]Lee, B.Y., Park, S.H., Lee, S.C., Kang, M. and Choung, S.J. (2004) Decomposition of benzene by using a discharge plasma-photocatalyst hybrid system. Catalysis Today, 93, 769-776.
[72]李俊宁, 王丽娜, 齐涛, 初景龙, 刘长厚, 张懿 (2008) 介孔气体吸附剂. 化学进展, 6, 851-858.
[73]Ikaunieks, J., Mezmale, L., Zandeckis, A., Pubule, J., Blumberga, A. and Veidenbergs, I. (2011) Non-thermal plasma for VOC treatment in flue gases. Environmental and Climate Technologies, 6, 31-37.

,