免责声明:本文旨在传递更多市场信息,不构成任何投资建议。文章仅代表作者观点,不代表火星财经官方立场。
小编:记得关注哦
来源:高承实
2008年,一个化名中本聪的人发表了一篇题为《比特币:一种点对点的电子现金系统》的旷世论文,创造出了比特币这种虚拟数字货币,其底层技术就是目前我们常说的区块链。
一、比特币系统的密码技术
1. 比特币系统的形象表示
4. 量子计算的最新发展
过去30年,物理学家在构建实用型量子计算机方面取得了巨大的进步。
2019年10月23日,谷歌在《自然》杂志发布了 “使用可编程超导处理器的量子至上性”实验结果。谷歌人工智能量子团队开发了一种名为“ Sycamore”的新型54比特处理器,该处理器能在200秒内完成目标计算。而要想完成相同的目标计算,世界上最快的超级计算机需要10000年。
竞争对手IBM第一时间对谷歌的这一“宣称”做出回应。IBM在一篇博客中表示,谷歌高估了计算项目的难度,谷歌所宣称的经典计算机需要10000年执行的任务,其实只要2.5天就能完成。但尽管如此,2.5天和200秒相比,毕竟还不是同一个数量级。
区块链的安全基于密码算法的安全,如 Hash 函数的安全和椭圆曲线密码算法的安全。量子计算机的出现将在底层密码算法层面对区块链的安全产生严重威胁,比特币、以太坊等许多区块链系统都会受到冲击。
三、量子计算对区块链的冲击
以比特币为代表的区块链安全协议涉及2种类型密码技术。一个是比特币“挖矿”过程中使用的哈希函数,一个是区块链上提供数字签名的非对称密码。采用的算法分别是SHA-256 哈希算法,和椭圆曲线数字签名算法(ECDSA)。SHA-256 主要用于由公钥生成钱包地址,以及挖矿时的工作量证明(PoW),ECDSA 主要用于私钥、公钥的生成,签名和验签等。
1. 量子计算对挖矿的威胁
比特币系统中,新的比特币通过“挖矿”产生,挖矿的过程就是矿工利用计算机计算比特币网络中数学问题的过程。第一个解决问题的矿工公布其答案,并计入账本,同步计入比特币网络中的所有节点。挖矿成功,系统奖励矿工一定数量的比特币。
比特币挖矿中使用的哈希函数是SHA-256。使用 SHA-256为每个区块计算一个随机数,虽然结果很容易验证,但搜寻过程非常艰难。通常采取的方法是使用蛮力搜索,意味着要尝试不同的输入,直到找到满意的答案为止。
量子力学中的Grover搜索从理论上可以解决这个问题。Grover算法在解决从无序数据库中搜索某个特定的数据问题方面有独特的优势,Grover算法使找到 Hash 函数的碰撞变得相对容易,也就意味着将会降低破解密码学哈希函数的安全级别。
那么反过来,能否用量子算法进行挖矿呢?如果用量子算法探矿,则需要相当快的量子哈希运算速度和更强的量子加速,但目前的技术水平还难以达到。关于量子计算机对挖矿的威胁,戴夫士•阿加沃尔(Divesh Aggarwal)和新加坡国立大学(NUS)的研究人员进行了深入研究,并在2017年10月就此发表了论文。他们认为,至少在未来10年内,使用ASIC挖矿的速度会比量子计算机快,不过10年后,量子计算机的挖矿速度会飞速增长。
2. 量子计算对非对称密码算法的威胁
非对称密码用于比特币系统中对交易的授权。非对称密码为系统中的所有用户分别分配1个公钥和1个私钥,公钥可广泛共享,私钥只有密钥所有者本人才知道。通过给定的私钥,可以很容易推算出对应的公钥,但反过来由公钥推算私钥,则非常困难。
比特币使用的非对称密码算法是椭圆曲线数字签名算法(ECDSA),利用 secp256k1 生成密钥。该算法保证比特币只能被合法拥有者使用。
椭圆曲线密码在量子计算中很容易受到攻击。Shor算法在理论上可以很容易将其修改,以解密带有椭圆曲线的消息。目前世界上已经有几例分别从理论上和实践上利用Shor算法攻击 ECC 的研究案例。有专家预计在 2027 年,量子计算机就可以实现对密钥的破解,量子计算机破解加密签名所需的时间预估为10分钟。但目前来看,要实现量子计算对ECDSA的攻击,需要一定数量的量子比特,有外媒报道称是4000个,目前的量子计算机远达不到这样的水平。
3. 谷歌量子计算机对密码算法的影响
谷歌量子计算机目前的水平基本可以从以下几个方面进行评判。
(1)谷歌的量子计算机还不是真正的量子计算机,不能实现所有的量子变换。只有实现破解密码算法中的那些变换,才可能对密码算法有影响。
(2)谷歌量子计算机能够实现的量子比特位数还很少。它完成的任务在大型传统计算机上也能完成。
(3)量子计算机实用化后,才有可能对基于离散对数和大合数分解设计的公钥算法有威胁。
(4)量子计算机对对称密码算法没有致命的威胁。从时间复杂性上看,只要密钥长度加倍,对称密码算法抗量子计算机的时间复杂性与电子计算机相同。
长远来看,运行Shor算法的实用量子计算机能够破解RSA、ECC等非对称密码算法。谷歌53个量子比特的量子计算机,针对一个没有应用价值的问题,验证了量子计算机比现有经典计算机强大。但目前谷歌量子计算机并不能对经典密码(包括非对称密码)的安全造成威胁。要想破译现用的RSA算法,目前估计需要能够稳定操纵几千个逻辑量子比特,相应的大概操纵百万量级的物理量子比特,要达到这一目标,还有很长的一段路。
4. 后量子密码技术在区块链系统中的应用
尽管目前区块链应用所使用的本地加密算法是安全的,这并不代表区块链从业者们可以高枕无忧。研究在量子计算机出现后对区块链系统仍然安全的密码算法十分重要。后量子密码技术,作为未来 5-10 年逐渐代替 RSA、Diffie-Hellman、椭圆曲线等现行公钥密码算法的密码技术,正被越来越多的人所重视。
后量子密码,又被称为抗量子密码,是被认为能够抵抗量子计算机攻击的密码算法。此类加密技术的开发采取传统方式,即基于特定数学领域的困难问题,通过研究开发算法使其在网络通信中得到应用,从而实现保护数据安全的目的。
后量子密码的应用不依赖于任何量子理论现象,但其计算安全性据信可以抵御当前已知任何形式的量子攻击。在区块链系统中应用后量子密码技术,以保证区块链在量子计算机出现后仍然安全。
非对称密码是后量子密码技术发展的重点领域。如随着Shor算法的提出,包括RSA、ECC以及DH密钥交换技术等非对称密码算法已经从理论上被证明彻底丧失了安全性。相对于对称密码系统还可以采取升级措施应对量子威胁,非对称密码必须采取全新方法重建,因而也就成为了后量子密码技术发展的重点。
当前国际后量子密码研究主要集中于基于格的密码(Lattice-based cryptography)、基于编码(Code-based cryptosystems)的密码系统、多元密码(Multivariate cryptography)和基于哈希算法签名(Hash-based signatures)等密码算法。在所有被认为具有抵御量子威胁潜力的计算问题中,基于格的密码系统在过去十年中得到了最为广泛的关注。
,