给孩子最好的科学教育
认识这个晕倒的8么:∞
它和8其实不是一个品种,它的本名叫做无穷大,它并不是一个数。
无穷大,很奇怪,5岁的小朋友就能理解,无穷大有多大。比如你随便想出一个数字,总可以再找一个比它大的数字。
可是,无穷大是不是只有一个品种呢?
第一个发现无穷大并不是只有一种的人,进了精神病院。今天我们就来八一八,无穷大的故事。
首先要明白的是,无穷大和8不一样,它不是一个数。
如果它是一个数,那么你只要给它加个1,那么就可以产生一个比它更大的值了。显然,无穷大并不参与你的这种加一游戏,你一要玩这种游戏,它就掉线。
所以,无穷大到底是什么来头?
长久以来,不光普通人闹不明白,数学家们也不敢说自己搞懂了。无穷大好像鬼,人人都听说过它,但是却不理解它,更没有见过它的真面目。
后来,出现了一个银,他开始思考,无穷大这个鬼,会不会也有不同品种的呢?
他做了这样一个思想实验,并且发现,一些无穷大,居然比其他的无穷大还要大。
我们先从简单的讲起。有一种无穷大用人类的大脑还是能理解的,因为和常识比较接近嘛。
比如,
1, 2, 3, 4, 5, 6, ….
这些正整数可以一直延伸到无穷大对吧。
负整数也是一样,
-1, -2, -3, -4, -5, -6, ….
随便你说一个整数,不管它有多大,只要你愿意写,就可以一直写到这个整数。换句话说,任意整数都可以被你安排到上面这列数字里。
因此,列出这些无穷多个数字的集合,叫做可数无穷。
其实,分数也属于可数无穷哦。
比如我们做这样一个表出来,
1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, …
2/1, 2/2, 2/3, 2/4, 2/5, 2/6, 2/7, …
3/1, 3/2, 3/3, 3/4, 3/5, 3/6, 3/7, …
4/1, 4/2, 4/3, 4/4, 4/5, 4/6, 4/7, …
5/1, 5/2, 5/3, 5/4, 5/5, 5/6, 5/7, …
...
随便你想到一个什么样的分数,它都可以在上面这个表里被找到,所以分数也属于可数无穷。
好的,那么,你能用同样的方法,做出0-1之间所有的有理数和无理数的数列,或者表格么?
如果你觉得可以,那我们来试试下面这个例子。
假设你列出了所有0-1之间的数,如下:
0.82705736…
0.31023865…
0.62087906…
0.55293091…
0.75235073…
…
我们现在就来证明,我总是可以造出一个0-1之间的数,而且它绝对不在你列的这些无穷多的数里面。
我是这样干的,我取0.82705736…的8,0.31023865…的1…
也就是画一条对角线,取出这条对角线和你列出的这些数相交的部分,组成一个新的数,也就是0.81095…
现在我用这个0.81095…干这样一件事,我把里面的1改成2,非1的数改成1,所以这个数就变成了:
0.12111…
这个数有什么奇怪的呢?奇怪就奇怪在,它肯定不在上面你列的那无穷多的数里面。
我们来证明一下。比如,
0.12111…的小数点后第1位(1)和你的第1个数0.82805736…的小数点后第1位的8不一样…
它的第2位(2)和你的第2个数0.31023865…的小数点后第2位的1不一样…
它的第3位(1)和你的第3个数0.62087906…的小数点后第3位的0不一样…
…
实际上,如果你说我造出的数和你的第N个数一样,你喊你的那个第N个数出来,它敢答应吗?
根据我设定的规则,我造的数的小数点后的第N位,就是和你的第N个数的小数点后第N位不一样,它当然不敢动啊。
当然,除了我设定的这种造数规则,还有其他各种各样的规则,可以把0.81095…变成列表里没有的数。
所以,0-1之间的数,不是可数无穷。这个无穷大,比自然数的无穷大可要大多了,因为自然数的无穷大还可以被你列表,但是0-1之间的数却永远没办法列出来。
那就给这样的无穷大取个名字呗,就叫不可数无穷吧。
当然,发现无穷大还可以这样玩的人,并不像我这样开心。
这个人,是个战斗种族裔,在自带不开心的种族属性的德意志受的教育。他的名字,叫做格奥尔格·康托尔(Georg Cantor)。
格奥尔格·康托尔
他是在1874年的时候发现了无穷大的野生品种这个秘密的,并且为现代数学的一个核心——集合论打下了基础。
不过,当时的数学家们各种不适应无穷大新品种的概念,他们各种嘲笑康托尔,说他是个大PI YAN ZI。
同时期的数学家有多么不理解他的研究呢?
比如,法国最伟大的数学家之一庞加莱这样评价康托尔的集合论:“后世的人会把集合论看作一个人曾经生过的一场病。”
又比如,1881年哈勒-维腾贝格大学(Martin-Luther-University Halle-Wittenberg)的数学家爱德华·海涅(Eduard Heine)去世后,康托尔推荐了3个数学家顶替他的位子,分别是理查德·戴德金(Richard Dedekind)、安里西·韦伯(Heinrich Weber)、弗朗茨·梅滕斯(Franz Mertens)。但好死不死,这3个人都拒绝了康托尔的提名,不肯过来。
别说德高望重的的数学家的隔空放炮,就连身边的多年好友也不理解自己。
1885年,他多年的好友、瑞典数学家哥斯塔·米塔-列夫勒(Gösta Mittag-Leffler)变成了高级黑,劝他把一篇论文从顶级数学期刊——《数学学报》(Acta Mathematica)上撤稿,理由是这篇文章“早了100年”。
就连他常年的好友、数学家赫尔曼·施瓦茨(Hermann Schwarz)和戴德金也为了避嫌而分别在1880年和1882年和康托尔中断了往来。
搞到后来,同时代的大佬哲学家,比如维特根斯坦(Ludwig Wittgenstein)都蹦出来添乱,说康托尔的集合论挑战了他们对上帝的看法,简直大不敬。
维特根斯坦
公元前5世纪,毕达哥拉斯的门徒希帕索斯(Hippasus)发现根号2是无理数,证明毕达哥拉斯学派所认为的“所有数都是有理数”的看法是错的。
死人是不能出卖这个秘密的,因此毕达哥拉斯的其他门徒把希帕索斯丢到海里淹死了,史称第一次数学危机…
而在两千年后,发现了2个有理数之间夹着无穷多无理数的康托尔,就这样,在这些数学家们的强烈鄙视和一连串暴击之下,在1884年被生生地怼抑郁了,在人生的最后阶段都不想搞数学了,一心一意地扑在莎士比亚和弗兰西斯·培根之间的关系上。
最后,康托尔住进了德国哈勒的精神病院,并且死在了那里。
好在死后又过了数十年,康托尔终于被平反。
曾经骂他渎神的维特根斯坦也良心发现,亲自撰文哀悼,说当时学术界指责集合论的说法是“可笑”、“错误”的“无稽之谈”。
德国数学家大卫·希尔伯特(David Hilbert)挥一挥手,人都被你们逼死了,你们都憋说了:
“没有人能够把我们从康托尔建立的乐园中赶出去。”(Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben können.)
所以,看不懂无穷大又有什么关系呢...你只不过犯了和庞加莱、戴德金、维特根斯坦...一样的错。你总是可以找到犯了这个错的人,而且TA不在前面这串人名里。
,