为了能安心看几集 Netflix 剧,技术宅奶爸都做了些什么……
长期以来,「奶爸」 「萌娃」一直是一个不被看好的组合,甚至有人说,「父爱如山体滑坡」。不信的话,以下都是证据:
众所周知,人类幼崽似乎是台永动机,在一天 24 小时任何时间段里都有可能向你发难。你能让自己睡个安稳觉的方法看来是在白天消耗他们的精力,因此人们想出了各种各样的方法。
当然,并不是所有的奶爸都这么不靠谱,也有人带起娃来挺正常的,Agustinus Nalwan 就是其中之一。
Agustinus Nalwan 是 Medium 上的一位博主,曾经从事计算机视觉、3D / 动画、游戏开发等方面的工作,目前供职于澳洲最大的汽车交易平台 carsale.au。
他有一个两岁半的儿子,名叫 Dexie。Dexie 非常活泼,喜欢动物,尤其是老鹰,经常学老鹰在家里飞来飞去。
孩子的这种举动一般也就引起家长的「哈哈」一笑(有的会拍成短视频发网上),但 Nalwan 可不是一般的家长,他一直在尝试用技术增添带娃的乐趣。去年三月份,Nalwan 就开发过一款具有玩具识别能力的系统,可以和儿子互动并根据他手里的玩具播放相关视频。
这个项目帮他拿到了英伟达「Jetson Project of the Month: Qrio – an interactive AI bot」活动的大奖,奖品是一台英伟达 Jetson AGX Xavier。
Jetson AGX Xavier 的配置信息。
这是一种算力不小的开发者套件,曾被京东、美团、菜鸟的无人快递车用作计算核心。鉴于 Jetson AGX Xavier 配置还不错,Nalwan 决定用它来帮儿子做一个新玩具,实现他「展翅高飞」的梦想。
新玩具名叫 Griffin(神话中的狮鹫),最终实现效果是这样的:
当然,奶爸也可以跟着一起玩:
或者自己玩:
这么好的带娃经验当然要分享出来。在最近的一篇博客中,Nalwan 完整地介绍了他打造 Griffin 的完整过程,手头有娃的可以参考一下。
传说中狮身鹰首的 griffin。《哈利波特》中的 Gryffindor 学院意为金色的 griffin。
以下是 Nalwan「从零开始」构建整套姿态识别游戏的历程。
物料准备
要实现上图中的效果,Griffin 需要具备以下模块:
以下是整个系统所需要的硬件:
Jetson AGX Xavier、 IMX327 摄像头和 Blu Tack。
实现
构建 3D 游戏引擎
为了更好地模拟飞行体验,Griffin 系统将以第三人称视角渲染 3D 世界。想象一下在 Griffin 正后方有一个摄像头看着他所看的地方。为什么不用飞行模拟器那样的第一人称视角呢?因为看到鹰的翅膀并同步移动自己的手臂,可以帮助 Dexie 快速学习如何控制这个游戏,并拥有一个更沉浸式的体验。
自行构建 3D 游戏引擎并非易事,可能需要好几周的时间。现在大多数开发者只使用专门的游戏引擎,如 Unity 或 Unreal。但是很遗憾,我找不到可以在 Ubuntu OS/ARM 芯片组上运行的游戏引擎。一种替代方法是找到在 OpenGL 上运行的开源飞行模拟器。这可以保证游戏引擎能在 AGX 上运行,因为它支持 OpenGL ES(OpenGL 的轻量级版本)并且得到硬件加速。如果你不想游戏引擎以龟速运行的话,则这是必要的条件。
幸运的是,我找到了一个满足标准的 C 开源飞行模拟器,并做了以下修改:
在 Blender 中编辑鹰的 3D 模型。
构建人体姿态估计模块
该模块旨在检测来自摄像头输入的人体姿态。具体而言,我们需要知道左 / 右手肘、左 / 右肩膀、脖子和鼻子的位置,才能驾驭 Griffin 的翅膀和身体,并触发特定的姿势。OpenPose 是一个流行的开源库,并具备大量估计人体姿态、手部姿势和面部特征的 AI 模型。我使用的是人体姿态估计 COCO 模型,以 resnet18 作为骨干特征提取器。该模型可以实时检测 18 个关节点,包括上述我们所需的 6 个点。
COCO 关节点图。
这里存在一个大问题:OpenPose 基于 PyTorch 框架构建,在 NVIDIA AGX Xavier 中运行速度很慢(4FPS),因为它无法利用重度优化的 TensorRT 框架。幸运的是,还有一个厉害的工具 torch2trt,它可以自动将 PyTorch 模型移植到 TensorRT 框架中!具体步骤是:安装 OpenPose,将 PyTorch 转换为 TensorRT,下载预训练 resnet18 骨干模型。
为了获取来自摄像头的视频内容,我使用另一个库 Jetcam。只需要四行代码,就可以运行。
人体姿态估计。
这样就得到了可以 100FPS 速度运行的人体姿态估计模块!
经过一些测试后,我发现有时候这个模型会将随机对象错误地识别为关节点(假正例,如下图所示),这会给 Griffin 的动作控制带来麻烦。
使用 Amazon SageMaker JumpStart 构建目标检测模型
解决该问题的一种方式是添加一个辅助 AI 模型,用目标检测模块来提供人体边界框,这样就可以排除掉在边界框以外检测到的人体关节点了。此外,这些边界框还可以帮助在一堆人中识别主要玩家,距离摄像头最近的人应该是主要玩家。
在之前的项目中,我手动训练过 SSDMobileNetV2 目标检测模型。这次我选择使用 Amazon SageMaker JumpStart,只需一键操作就可以从 TensorFlowHub 和 PyTorchHub 部署 AI 模型。这里有 150 多个可选的模型,其中就有经过完全预训练的 SSDMobileNetV2。
从 Amazon SageMaker Studio 中启动 JumpStart。
在 Amazon JumpStart 中选择 SSDMobileNetV2 后,只需一键操作就可以部署模型。有了目标检测模型后,我可以为边界框以外的关节点添加 exclusion logic,这样假正例就会少很多!
在人体边界框以外的关节点被排除在外。
构建动作映射和手势识别模块
该模块对于将人体姿态估计模块检测到的 6 个关节点动作转换为更具意义的输入至关重要。这包括三种直接的动作映射:
身体转动和翅膀旋转时的动作映射。
蹲伏动作映射。
起飞和复位手势识别。
通信系统
现在,我们完成了三个主要组件,只需要将它们粘合在一起就行了。我们需要将姿态估计模块检测到的人体关节点发送至手势识别模块,这个任务比较简单。但是,将动作和姿势映射结果发送至 3D 游戏引擎就不那么简单了,因为游戏引擎是用 C 写的。你可能会疑惑为什么不用 Python 构建 3D 游戏引擎,原因在于没有靠谱的方式来使用 Python 访问 OpenGL。此外,即使可能,我也不想花费好几周时间将 C 转换为 Python 代码。
此时我需要以最小花销高效地在这二者之间传递信息。对于游戏引擎而言,最小花销是非常重要的因素,输入控制器和动作发生之间出现 100ms 的延迟都会导致玩家失去沉浸式体验。因此,两个单独应用之间的最好通信媒介是 socket。由于这两个应用在同一台计算机内,因此延迟会在 5ms 以内。
在 C 中,我们简单地使用 sys/socket 库,而在 Python 中,我们可以使用 socket 框架。从现在开始,我把手势识别和姿态估计模块称作 Python app,该客户端发送五种信息:roll_target、lwing_target、rwing_target、body_height 和 game_state。把 3D 游戏引擎称为 C app,充当监听并不断接收上述信息的服务器。
为了将这五种信息 / 变量正确地从 Python 映射到 C 上,在发送之前我们需要将其放置在 Python C-like 结构中。
class Payload(Structure):
_fields_ = [(“roll_target”, c_int32),
(“lwing_target”, c_int32),
("rwing_target", c_int32),
("body_height", c_int32),
("game_state", c_int32)]
在 C app 中,它们以本机 C 结构形式接收。
typedef struct payload_t
{
int32_t roll_target;
int32_t lwing_target;
int32_t rwing_target;
int32_t body_height;
int32_t game_state;
} payload;
从下面的架构图可以看出,通信层由一个位于 Python app 中的客户端模块和一个位于 C app 中的服务器模块组成。
Griffin 的整体架构图。
校准与测试
准备就绪后,我设置了 Griffin 系统以执行校准和测试。这套系统的性能要比我预测的好很多,在执行所有实时 3D 渲染和姿态估计时一直都保持在 60FPS 的帧率,看来英伟达的 Jetson AGX Xavier 性能强大不是说说而已。在下面的视频中,你可以看到校准和测试的过程。这个视频帧率较低,是因为我在 Ubuntu 桌面上以 15FPS 录屏,尽量减少对 Griffin 的影响。
Griffin 系统的校准与测试。
起飞
最后,是时候让 Dexie 用 Griffin 尝试第一次飞行了,这才是真正的大考。我在客厅里架设好了系统,我儿子一直在不耐烦地等待行动。
Dexie 使用 Griffin 飞行的经历。
我只演示了一遍如何控制 Griffin 系统,跳一下就是起飞,展开手臂依靠姿势控制翅膀,Dexie 就学会了。由于游戏是第三人称视角,所以他很快就发现画面中翅膀的运动是直接和自己姿势同步的。随后他就开始享受自己的飞行体验了。没有什么是比你自己更好的游戏控制器了——记住乔布斯在发布第一代 iPhone 时嘲笑手写笔时所说的话。
有意思的是,Dexie 有次快要撞山时,他奋力扬起手臂想要来个急转弯,但由于我设置了最大旋转角度限制,Griffin 不允许他飞特别极限的角度,随后他就撞了山…… 当时是这个样子:
Dexie 在 Griffin 上的首飞。
他上来就玩了半小时,发疯似地挥舞着手臂,直到疲倦袭来。最重要的是,那天晚上他睡得很香,对我们来说这是一次胜利!我有更多时间看 Netflix 了 :)
总结
构建这样一套系统让我学到了很多,同时获得的乐趣也很多。总体来说我学到了:
不知这样的一段经历,是否能给你一些启发?
最后,作者计划在近期将项目代码开源出来。
参考内容:
agustinus-nalwandium/making-my-toddlers-dream-of-flying-come-true-with-ai-tech-85e40d7144a2
,