多项式除以多项式一般用竖式进行演算,把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐,用被除式的第一项除以除式第一项,得到商式的第一项,用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来,把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式若余式为零,说明这个多项式能被另一个多项式整除,我来为大家科普一下关于多项式除法介绍?以下内容希望对你有帮助!
多项式除法介绍
多项式除以多项式一般用竖式进行演算,把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐,用被除式的第一项除以除式第一项,得到商式的第一项,用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来,把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式。若余式为零,说明这个多项式能被另一个多项式整除。
把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。