福岛第一核电站事故(日语:福島第一原子力発電所事故)是2011年3月11日在日本福岛第一核电站发生的核事故,由日本东北地方太平洋近海地震和伴随而来的海啸所引发。这次事故在国际核事件分级表(INES)中被分类为最严重的7级。2015年3月调查发现,堆芯内所有核燃料都已熔毁。这次事故是东日本大震灾的次生灾害之一。截至2019年3月,这次事故造成的受灾区域面积几乎与名古屋市相同(337km2)。
摄于2011年3月16日 从左到右分别为4、3、2、1号机
概要东北地方太平洋地震于2011年3月11日发生时,福岛第一核电站的1-3号机正在运行,4-6号机停机处于定期安全检查状态。地震后,1-3号机的所有反应堆自动停止了。地震引发了电源故障,导致机组失去了外部供电,但还是成功启动了应急柴油发电机。
地震发生约50分钟之后,最高高度约为14米~15米(电脑分析后得出的高度为13.1米)的海啸袭击了核电站,设置在地下室的应急柴油发电机淹没在水中而停止运行。此外,电器、水泵、燃料罐、紧急电池等大部分设备受损或被水冲走,核电站陷入了全厂停电(Station Blackout,缩写:SBO)。因此,水泵无法运行,不能继续向堆芯和乏燃料池注入冷却水,也就不能带走核燃料的热量。由于核燃料在停堆后仍然会产生巨大的衰变热,如果不继续注水,堆芯内就会开始空烧。最终,核燃料会因自身放热而熔化。
在1-3号机中,由于燃料组件的包壳熔化,包壳中的燃料颗粒落到反应堆压力容器底部,形成了堆芯熔毁。熔化的燃料组件温度极高,熔穿了压力容器底部,并熔化了控制棒插入孔和密封处,一部分燃料从开孔处落入反应堆安全壳。此外,由于燃料本身的高温以及安全壳中产生的水蒸气和氢气引起的压力急剧升高,安全壳受到了部分损坏,1号机组的管道部分也已损坏。
另外,1-3号机熔毁的堆芯向反应堆、汽轮机厂房内释放了大量氢气,导致1、3、4号机发生了氢气爆炸,厂房和周围的设施被严重损坏(虽然在事故发生时4号机处于停机状态,但是氢气很可能从3号机通过两个机组共用的排气管进入4号机,因为该管道在停电时是打开的。
事故中的一系列事件在周围环境中泄漏了大量放射性物质,包括排气泄压操作、氢气爆炸、安全壳破损、管道蒸汽泄漏、冷却水泄漏等。1-3号机相继发生堆芯熔毁,1、3、4号机发生氢气爆炸,使得这起事故成为了前所未有的特大核事故。
事故中向大气中泄漏的放射性物质量有多种说法。根据东京电力的推算,共泄漏了大约90万亿[注 3]贝克勒尔(Bq)的铀元素和碘-131、镉-137和钚-134大规模释放,大约相当于切尔诺贝利事故520万亿Bq的六分之一。截至2011年8月,平均每半月泄漏2亿Bq(0.0002TBq)的铀元素。辐射量在每年5毫希沃特(mSv)以上的地区大约有1800km2,其中每年20mSv以上的则有500km2。
2012年,日本政府将福岛第一核电站周围20km圈内的地区作为警戒区域,圈外辐射量高的地区作为“计划中的避难区域”,共计约10万居民撤离。2012年4月,根据地区的辐射量重新指定了准备解除避难指示区域、限制居住区域、返回困难区域。原则上不允许进入返回困难区域。2014年4月,一些地区逐渐解除了避难指示。2020年3月,全部准备解除避难指示区域及限制居住区域都已解除避难指示,但返回困难区域除了一部分以外仍然保持避难指示。
截至2021年,废炉工作正在进行中,如果进行顺利,将在2041年到2051年左右完成。
2021年4月13日,日本政府正式决定将约120万吨稀释后(正在接受国际原子能机构的安全标准检查)的核处理水排入大海,预计2023年开始正式排放。
事故内容事故经过]关于3月为止的详细经过,请参考福岛核电站事故时间轴。关于4月开始的详细经过,请参考福岛第一核电站事故的经过 (2011年4月开始)
地震与海啸造成的电源丧失日本近海的牡鹿半岛在2011年3月11日14时46分发生了东北地方太平洋地震。福岛第一核电站所在的大熊町的烈度为6级,记录到的最大加速度为550伽,是福岛第一核电站最大加速度设计基准的126%。超出设计基准的地震导致核电站部分受损。作为参考,与其他地震相比,阪神大地震中测得的最大加速度为818伽。截至事故发生为止,世界最大加速度的地震是载入吉尼斯世界纪录中的2008年6月14日岩手宫城内陆地震(4022伽)。
正在运行的1-3号机在地震时立刻自动插入控制棒以进行紧急停堆。核电站供电系统的六个输电塔中有一个在地震中倒塌,致使5-6号机失去外部电源。随后,1-4号机由于断线、短路以及设备故障等原因同样失去了外部电源。停电的厂房内又有的地方大量漏水,工作人员只得紧急撤离。
失去了外部电源后,一段时间内成功启动了紧急电源柴油发电机。但是地震发生后41分钟的15时27分,从太平洋打来了首波巨大的海啸,之后又数次袭击核电站。海啸越过防波堤,严重损坏核电站内的各种设备,并淹没了地下室、竖井。设置在地下室的1-6号机的紧急电源同样遭到淹没。海水循环冷却泵及燃料箱也被冲走了。
结果,1、2、4号机失去了所有电源,3、5号机失去了交流电源,导致堆芯应急冷却系统(ECCS)和冷却水循环泵无法运行。此外,海啸还破坏了海水冷却系统(RHR)[35]。堆芯停堆后,核燃料在很长一段时间内仍会继续产生衰变热,如果长时间缺乏冷却,就会发生过热,从而导致严重的后果。
如果无法冷却燃料棒,堆芯温度就会持续升高。堆芯内的冷却水汽化后,水位会持续下降,同时蒸汽会导致压力容器和安全壳中的压力升高。最终,燃料颗粒包壳管(锆合金材料)熔化,与水发生化学反应而产生大量氢气。除非采取有效措施,否则即使反应堆已经停堆,仍然有可能在数十小时内爆炸。
为了防止这种情况,需要通过使安全壳内的蒸气向外部释放(排气泄压)来降低安全壳内的压力。但是,排气本身会释放放射性物质,所以这是作为避免最坏情况的最终手段。通常的泄压方式称为湿式排气(也被称为PCV排气),其中安全壳中的蒸汽排出前会经过压力抑制室中储存的水,以除去大部分放射性物质,然后才释放到外界环境中。而干式排气将蒸汽直接释放到外界,会比湿式排气释放更多的放射性物质。
由于停电,不仅失去了反应堆的冷却功能,而且指示反应堆状态的各种仪表也不工作,再加上停电的核电站内缺少照明和通讯功能,使得处理事故极为困难。遭到海啸袭击的核电站现场还有大量砖瓦碎片、杂乱的车辆和油罐等,阻碍了救灾物资和车辆的运输。持续的海啸警报和反复发生的余震也经常迫使现场人员中断工作。
1号机最早停止注水,事故发生第二天即堆芯熔毁、氢气爆炸。2号机蒸汽涡轮驱动的堆芯隔离冷却系统连续向堆芯中注水3天。还残有直流电源的3号机组也继续注水了2天。这是因为这两个机组虽然失去了交流电源,但堆芯隔离冷却系统(RCIC)、高压注水系统(HPCI)及其蒸汽涡轮驱动的注水装置还能运行。
但是,随后的停电时间超过了核电站设计时假设的最长停电时间8小时,紧急电池也耗尽了。地震和海啸造成的交通拥堵导致电源车延误,再加上抵达现场的62辆电源车中只有一辆与反应堆电压相匹配,使得电源车的输出不足;由于唯一的电力接收装置在海啸中被淹没,地震发生后第二天搭建了临时电缆,但接通仅6分钟后就在1号机的氢气爆炸中炸毁;日本自卫队和驻日美军的发电车由于重量过大而无法通过直升机空运;在一系列因素的影响下停电时间被大大延长了。
善后工作及后续初期作业善后工作的目的是将反应堆保持在低温停止状态,具体措施是通过水泵车或架设临时水泵,将冷却水注入堆芯与乏燃料池后再进行排水。初期水源直接使用海水,后来改用福岛县双叶郡大熊町的水坝贮藏的淡水。7月上旬,虽然该工作尚未完成,但已从一直以来单纯的注水排水转为了冷却水循环(使用阿海珐和Kurion除污设备进行)。8月,东芝等公司开发的SARRY更进一步加强了处理能力。此后一直在进行使事态结束的努力。
现场的工作人员和技术人员在苛刻的条件下进行着事故善后工作。他们由于最初的人数而被赞誉为“福岛50死士”。
修理汽轮机厂房前必须排出污染水,因此堆芯注水工作、汽轮机排水工作与使用机器人进行的调查工作同时进行。反应堆厂房内有极高的辐射,现场人员无法进入,管道故障状况的调查与故障维修变得难以进行。并且由于很多仪表及电气系统都发生了故障,现场人员无法把握反应堆的详细信息。为了帮助现场人员分析情况,使用了“核灾害用机器人”进行调查与信息收集工作。
参见:核灾中的机器人和救援机器人 § 核灾害
4月17日,东京电力发布了从2011年10月开始到2012年1月为止的善后工程表,将堆芯低温停止分为了2个步骤。进行的顺序主要是:
- 使用遥控设备严格监控工作人员的辐射剂量和健康状况,预防放射综合症等疾病。
- 为了让工作人员可以进入厂房,并且防止污染向周围环境中泄漏,确保将厂房内含有放射性物质的水转移到可以安全保管的地方。日后再进行净化。
- 为了让工作人员可以进入厂房,过滤厂房中的空气以降低辐射量。
- 工作人员进入厂房后先修理水位计和压力计,以更准确地掌握情况。然后,根据掌握的情况选择对应合适的冷却方式。在这过程中,为了避免压力降低空气流入而发生氢气爆炸,需要继续注入氮气。
- 加固4号机乏燃料池底部。
- 尽快建立基于空气冷却的冷却水循环系统,达到低温停止状态。
为了减少妨碍工作的辐射,同时减少空气污染,进行了以下措施:
- 在现场喷洒飞散防止剂(树脂乳液)。
- 用遥控工程车清理被污染的砖瓦碎片。
- 用特殊覆盖物覆盖住反应堆厂房。
2011年12月16日,日本政府称反应堆已达到了低温停止状态,宣布“核电站的事故已经结束了”。福岛县知事对此表示反对。
2013年3月18日,1、3、4号机与共用乏燃料池突然停电,暂时失去冷却循环能力。20日清晨修复了配电箱并恢复了冷却能力。
,