通知:我已经将刷题指南全部整理到了Github :https://github.com/youngyangyang04/leetcode-master,方便大家在电脑上阅读,这个仓库每天都会更新,大家快去给一个star支持一下吧!

279.完全平方数

题目地址:https://leetcode-cn.com/problems/perfect-squares/

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:输入:n = 12输出:3解释:12 = 4 4 4

示例 2:输入:n = 13输出:2解释:13 = 4 9 提示:

  • 1 <= n <= 10^4
思路

可能刚看这种题感觉没啥思路,又平方和的,又最小数的。

我来把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

感受出来了没,这么浓厚的完全背包氛围,而且和昨天的题目动态规划:322. 零钱兑换就是一样一样的!

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:和为i的完全平方数的最少数量为dp[i]

  1. 确定递推公式

dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] 1, dp[j]);

  1. dp数组如何初始化

dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。

有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?

看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, ...),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。

非0下标的dp[j]应该是多少呢?

从递归公式dp[j] = min(dp[j - i * i] 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[i]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖

  1. 确定遍历顺序

我们知道这是完全背包,

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

在动态规划:322. 零钱兑换中我们就深入探讨了这个问题,本题也是一样的,是求最小数!

所以本题外层for遍历背包,里层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!

我这里先给出外层遍历背包,里层遍历物品的代码:

vector<int>dp(n 1,INT_MAX); dp[0]=0; for(inti=0;i<=n;i ){//遍历背包 for(intj=1;j*j<=i;j ){//遍历物品 dp[i]=min(dp[i-j*j] 1,dp[i]); } }

  1. 举例推导dp数组

已输入n为5例,dp状态图如下:

整数规划的算法有哪些(程序员必学算法)(1)

dp[0] = 0dp[1] = min(dp[0] 1) = 1dp[2] = min(dp[1] 1) = 2dp[3] = min(dp[2] 1) = 3dp[4] = min(dp[3] 1, dp[0] 1) = 1dp[5] = min(dp[4] 1, dp[1] 1) = 2

最后的dp[n]为最终结果。

C 代码

以上动规五部曲分析完毕C 代码如下:

//版本一 classSolution{ public: intnumSquares(intn){ vector<int>dp(n 1,INT_MAX); dp[0]=0; for(inti=0;i<=n;i ){//遍历背包 for(intj=1;j*j<=i;j ){//遍历物品 dp[i]=min(dp[i-j*j] 1,dp[i]); } } returndp[n]; } };

同样我在给出先遍历物品,在遍历背包的代码,一样的可以AC的。

//版本二 classSolution{ public: intnumSquares(intn){ vector<int>dp(n 1,INT_MAX); dp[0]=0; for(inti=1;i*i<=n;i ){//遍历物品 for(intj=1;j<=n;j ){//遍历背包 if(j-i*i>=0&&dp[j-i*i]!=INT_MAX){ dp[j]=min(dp[j-i*i] 1,dp[j]); } } } returndp[n]; } };

总结

如果大家认真做了昨天的题目动态规划:322. 零钱兑换,今天这道就非常简单了,一样的套路一样的味道。

但如果没有按照「代码随想录」的题目顺序来做的话,做动态规划或者做背包问题,上来就做这道题,那还是挺难的!

经过前面的训练这道题已经是简单题了,哈哈哈

就酱,「代码随想录」值得分享给身边每一位学习算法的朋友同学们!

力扣刷题指南:https://github.com/youngyangyang04/leetcode-master

这里每天8:35准时推送一道经典算法题目,我选择的每道题目都不是孤立的,而是由浅入深,环环相扣,帮你梳理算法知识脉络,轻松学算法!

@代码随想录 期待你的关注

,