高等数学应用非常广,基本上涉及到函数的地方都要用到微积分,还有在几何方面也是如此,计算机的应用让我们能简单快速处理各种高等数学中的计算,比如极限、导数、积分、微分方程等的计算。
实验目的使用 Python 通过计算与作图,加强对极限、导数、积分等概念的理解,并掌握它们计算方法,以及求微分方程和方程组解析解的方法。
实验原理与数学模型- 函数极限的求解讨论以及两个重要极限的验证。
- 导数概念和导数的几何意义,以及计算多元函数偏导数和全微分的方法。
- 一元函数积分学和多元函数积分学。
- 微分方程和方程组在有无初始条件的分析。
- Python 3.7
- NumPy 1.16.4
- SymPy 1.4
- Matplotlib 3.1.1
- 函数极限的求解和两个重要极限的探究;
- 导数、高阶导数以及隐函数、参数方程定义函数导数的求解,多元函数偏导数和全微分的求解;
- 计算定积分和不定积分以及重积分的方法;
- 求解微分方程以及方程组解析解的方法。
1. 函数极限的求解和两个重要极限
在这个实验中我们通过对简单的函数进行单侧极限的求解,并且分析两个重要极限。
例 1:考虑函数
解:编写Python代码如下:
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
# 求函数 y=arctan(1/x) 的左右极限
x = sp.Symbol('x')
fr = sp.atan(1 / x)
xl = sp.limit(fr, x, 0, dir='-')
xr = sp.limit(fr, x, 0, dir=' ')
print('%s 左极限是:%s' % (fr, xl))
print('%s 右极限是:%s' % (fr, xr))
# 绘制函数 y=arctan(1/x) 的图像
x = np.arange(-6, 6, 0.01)
y = np.arctan(1 / x)
plt.title('y=arctan(1/x)')
plt.plot(x, y)
plt.show()
运行代码输出结果和绘制图像:
atan(1/x) 左极限是:-pi/2
atan(1/x) 右极限是:pi/2
根据计算结果和绘制的图像分析求得出题中函数的左右极限分别为 -pi/2 和 pi/2 。
例 2:两个重要极限的验证。
解:编写Python代码如下:
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
# 分析两个重要极限
x = sp.Symbol('x')
f1 = sp.sin(x) / x
f2 = (1 1 / x) ** x
x1 = sp.limit(f1, x, 0)
x2 = sp.limit(f2, x, 'oo')
print('%s 第一重要极限的值:%s' % (f1, x1))
print('%s 第二重要极限的值:%s' % (f2, x2))
# 绘制函数图像分析两个重要极限
x1 = np.arange(-3, 3, 0.01)
x2 = np.arange(0.01, 100, 0.1)
y1 = np.sin(x1) / x1
y2 = (1 1 / x2) ** x2
plt.figure(figsize=(12, 5))
plt.subplot(121)
plt.title('y=sin(x)/x')
plt.plot(x1, y1)
plt.subplot(122)
plt.title('y=(1 1/x)**x')
plt.plot(x2, y2)
plt.show()
运行代码输出结果和绘制图像:
sin(x)/x 第一重要极限的值:1
(1 1/x)**x 第二重要极限的值:E
根据上图变化趋势理解函数极限和程序得出的答案,验证两个重要极限。
2. 导数与微分的研究
在这个实验中,我们探究导数概念及其几何意义,高阶导数,隐函数导数,参数方程定义的函数导数,以及求解多元函数偏导数和全微分。
例 1:求 f(x)=2x^3 3x^2-12x 7 的导函数,并作出该函数图形和在 x=-1 处的切线。
解:编写Python代码如下:
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
# 导数与微分
x = sp.Symbol('x')
f = 2 * x ** 3 3 * x ** 2 - 12 * x 7
d = sp.diff(f)
print('%s 的导函数为:%s' % (f, d))
y_d = d.evalf(subs={x: -1})
y_h = f.evalf(subs={x: -1})
print('将x=-1代入导函数求解为:%d' % y_d)
print('将x=-1代入原函数求解为:%d' % y_h)
f_d = y_d * (x 1) y_h
print('得出切线方程为:%s' % f_d)
# 绘制函数图和切线图
x = np.arange(-4, 3, 0.01)
y1 = 2 * x ** 3 3 * x ** 2 - 12 * x 7
y2 = 8 - 12 * x
plt.title('函数y=2*x**3 3*x**2-12*x 7以及当x=-1时的切线')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.plot(x, y1, x, y2)
plt.show()
运行代码输出结果和绘制图像:
2*x**3 3*x**2 - 12*x 7 的导函数为:6*x**2 6*x - 12
将x=-1代入导函数求解为:-12
将x=-1代入原函数求解为:20
得出切线方程为:8.0 - 12.0*x
最后执行便在同一个坐标系内作出了函数 f(x) 的图形和它在 x=-1 处的切线(直线为切线)。
注:此两行代码是为了解决在绘图中显示中文乱码的问题。
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
例 2:求函数 y=x^{10} 2(x-10)^9 的1阶到11阶导数。
解:编写Python代码如下:
import sympy as sp
x = sp.Symbol('x')
y = x ** 10 2 * (x - 10) ** 9
for n in range(1, 12):
y = d = sp.diff(y)
print('第-阶导数为:%s' % (n, d))
输出即为题中要求所得函数高阶导数。
例 3:求由方程 2x^2-2xy y^2 x 2y 1=0 确定的隐函数的导数。
解:编写Python代码如下:
import sympy as sp
x, y = sp.symbols('x y')
z = 2 * x ** 2 - 2 * x * y y ** 2 x 2 * y 1
d = -sp.diff(z, x) / sp.diff(z, y)
print('原方程导数为:%s' % d)
运行代码输出结果:
原方程导数为:(-4*x 2*y - 1)/(-2*x 2*y 2)
该实验根据隐函数求导公式 dy/dx=-Fx/Fy 求得,然后再根据一般求导公式即可求出结果。
例 4:求由参数方程 x=e^tcos(t), y=e^tsin(t) 确定的函数的导数。
解:编写Python代码如下:
import sympy as sp
t = sp.Symbol('t')
x = sp.exp(t) * sp.cos(t)
y = sp.exp(t) * sp.sin(t)
d = sp.diff(y, t) / sp.diff(x, t)
print('原参数方程导数结果为:%s' % d)
d = sp.simplify(d)
print('原参数方程导数化简为:%s' % d)
运行代码输出结果:
原参数方程导数结果为:(exp(t)*sin(t) exp(t)*cos(t))/(-exp(t)*sin(t) exp(t)*cos(t))
原参数方程导数化简为:tan(t pi/4)
根据参数方程求导法则最后求得由参数方程确定函数的导数。
例 5:设 z=sin(xy) cos^2(xy) ,求偏导数(省略数学公式,点击阅读原文查看)。
解:编写Python代码如下:
import sympy as sp
x, y = sp.symbols('x y')
z = sp.sin(x * y) (sp.cos(x * y)) ** 2
d1 = sp.diff(z, x)
d2 = sp.diff(z, y)
d3 = sp.diff(z, x, 2)
d4 = sp.diff(sp.diff(z, x), y)
print('第一偏导数为:%s' % d1)
print('第二偏导数为:%s' % d2)
print('第三偏导数为:%s' % d3)
print('第四偏导数为:%s' % d4)
运行代码输出结果:
第一偏导数为:-2*y*sin(x*y)*cos(x*y) y*cos(x*y)
第二偏导数为:-2*x*sin(x*y)*cos(x*y) x*cos(x*y)
第三偏导数为:y**2*(2*sin(x*y)**2 - sin(x*y) - 2*cos(x*y)**2)
第四偏导数为:2*x*y*sin(x*y)**2 - x*y*sin(x*y) - 2*x*y*cos(x*y)**2 - 2*sin(x*y)*cos(x*y) cos(x*y)
以上为多元函数偏导数的结果。
3. 定积分与不定积分以及重积分的研究
在这个实验中,我们研究定积分与不定积分的计算,以及多重积分的计算,深入理解曲线积分、曲面积分的概念个计算方法。
例 1:计算 \int{\sqrt{4-x^2}dx} 和 \int_1^2{\sqrt{4-x^2}} 。
解:编写Python代码如下:
import sympy as sp
x = sp.Symbol('x')
y = sp.sqrt(4 - x ** 2)
i1 = sp.integrate(y, x)
i2 = sp.integrate(y, (x, 1, 2))
print('不定积分的结果为:%s' % i1)
print('定积分的结果为:%s' % i2)
运行代码输出结果:
不定积分的结果为:x*sqrt(4 - x**2)/2 2*asin(x/2)
定积分的结果为:-sqrt(3)/2 2*pi/3
使用 Python 求解不定积分时,会省略积分的常数。
例 2:计算三重积分 \iiint{(x^2 y^2 z)dxdydz} ,其中由曲面 z=\sqrt{2-x^2-y^2} 与 z=\sqrt{x^2 y^2} 围成。
解:编写Python代码作出区域曲面图形,如下:
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import axes3D
x = np.arange(-1, 1, 0.05)
y = np.arange(-1, 1, 0.05)
x, y = np.meshgrid(x, y)
z1 = np.sqrt(x ** 2 y ** 2)
z2 = np.sqrt(2 - x ** 2 - y ** 2)
ax = Axes3D(plt.figure())
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
ax.set_title('三重积分曲面')
ax.plot_surface(x, y, z1)
ax.plot_surface(x, y, z2)
plt.show()
将方程转换为柱坐标计算,然后确定积分限,编写Python代码:
import sympy as sp
r, s, z = sp.symbols('r s z')
f = (r ** 2 z) * r
i = sp.integrate(sp.integrate(sp.integrate(f, (z, r, sp.sqrt(2 - r ** 2))), (r, 0, 1)), (s, 0, 2 * sp.pi))
print('三重积分计算结果为:%s' % i)
运行代码输出结果:
三重积分计算结果为:2*pi*(-5/12 8*sqrt(2)/15)
4. 求微分方程的解析解
在这个实验中,我们用通过 Python 来求解微分方程的通解,在初始条件下的特解,以及微分方程组在初始条件下的特解。
例 1:求微分方程 y' 2xy=xe^{-x^2}
解:编写Python代码如下:
import sympy as sp
x = sp.Symbol('x')
f = sp.Function('f')
y = f(x)
d = sp.Eq(y.diff(x) 2 * x * y, x * sp.exp(-x ** 2))
diff = sp.dsolve(d, y)
print('微分方程的通解为:%s' % diff)
运行代码输出结果:
微分方程的通解为:Eq(f(x), (C1 x**2/2)*exp(-x**2))
例 2:求微分方程 xy' y-e^{-x}=0 在初始条件 y(x=1)=2e 下的特解。
解:编写Python代码如下:
import sympy as sp
x = sp.Symbol('x')
f = sp.Function('f')
y = f(x)
d = sp.Eq(x * y.diff(x) y - sp.exp(-x), 0)
diff = sp.dsolve(d, y, ics={f(1): 2 * sp.exp(1)})
print('微分方程的特解为:%s' % diff)
运行代码输出结果:
微分方程的特解为:Eq(f(x), ((1 2*exp(2))*exp(-1) - exp(-x))/x)ga
,