本期继续连载数学基础的最后一部分:概率论,包括基础概念、似然、最大似然估计、概率分布衡量等。至此数学基础知识就介绍完啦,下次开始介绍具体的模型算法。

《机器学习基础知识手册》总结了更多的问题,欢迎访问github地址:https://github.com/5663015/machine-learning-handbook

概率论基础概念

​是后验概率,​是条件概率或似然

对于连续型随机变量X,概率密度函数为​,则期望为:

期望的性质:

方差的性质:

概率和似然的区别与联系最大似然估计和最大后验概率的区别

是已知的,只需最大化分子部分。和最大化似然的唯一区别是增加了先验概率

KL散度、JS散度、Wasserstein距离

将KL散度展开可得,其中为熵,为交叉熵。KL散度实际上衡量的是两者之间的信息损失

关于分布不重合时的情况举例,对于如下的分布,P1在AB上均匀分布,P2在CD上均匀分布,控制着两个分布的距离远近。可得:

机器学习面试题精选连载(机器学习面试题精选连载)(1)

​是​分布组合起来的所有可能的联合分布的集合。对于每一个可能的联合分布​,可以从中采样​得到一个样本​x和y​,并计算出这对样本的聚类​,所以可以计算该联合分布​下,样本对距离的期望值​。在所有可能的联合分布中能够取到这个期望值的下界的就是wasserstein距离。直观上可以理解为在​这个路径规划下把土堆​挪到土堆​所需要的消耗。而Wasserstein距离就是在最优路径规划下的最小消耗,也叫做Earth-mover距离。

机器学习面试题精选连载(1)——模型基础

机器学习面试题精选连载(2)——微积分与线性代数

机器学习面试题精选连载(3)——线性代数

,