由于核糖体是抗生素的一个共同目标,所以有大量关于细菌核糖体与各种抑制因子怎样结合的结构数据我们对抑制因子与较大真核核糖体的结合方式的认识是有限的,接下来我们就来聊聊关于简答核糖体的结构与功能?以下内容大家不妨参考一二希望能帮到您!

简答核糖体的结构与功能(Nature:真核核糖体抑制的机制)

简答核糖体的结构与功能

由于核糖体是抗生素的一个共同目标,所以有大量关于细菌核糖体与各种抑制因子怎样结合的结构数据。我们对抑制因子与较大真核核糖体的结合方式的认识是有限的。

Marat Yusupov及同事发表了结合到12个真核特定抑制因子和4个广谱抑制因子上的酵母80S核糖体的结构。在结构数据和动力研究的基础上,作者提出了关于环己酰亚胺和Lactimidomycin的作用的一个模型。

该模型显示,一个抑制因子的大小能决定其对于核糖体的可及性,因而也能决定其作用机制。这个新模型为针对真菌和原生动物感染、癌症以及由“提前终止密码子”引起的遗传病的新型抗生素和治疗方法的基于结构的设计提供了普遍原理。

原文摘要:

Structural basis for the inhibition of the eukaryotic ribosome

Nicolas Garreau de Loubresse, Irina Prokhorova, Wolf Holtkamp, Marina V. Rodnina,Gulnara Yusupova & Marat Yusupov

The ribosome is a molecular machine responsible for protein synthesis and a major target for small-molecule inhibitors. Compared to the wealth of structural information available on ribosome-targeting antibiotics in bacteria, our understanding of the binding mode of ribosome inhibitors in eukaryotes is currently limited. Here we used X-ray crystallography to determine 16 high-resolution structures of 80S ribosomes from Saccharomyces cerevisiae in complexes with 12 eukaryote-specific and 4 broad-spectrum inhibitors. All inhibitors were found associated with messenger RNA and transfer RNA binding sites. In combination with kinetic experiments, the structures suggest a model for the action of cycloheximide and lactimidomycin, which explains why lactimidomycin, the larger compound, specifically targets the first elongation cycle. The study defines common principles of targeting and resistance, provides insights into translation inhibitor mode of action and reveals the structural determinants responsible for species selectivity which could guide future drug development.

来源: Nature中文 浏览次数:14

,